login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325873
T(n, k) = [x^k] Sum_{k=0..n} |Stirling1(n, k)|*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n.
2
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 0, 8, 5, 10, 0, 1, 0, 26, 58, 15, 20, 0, 1, 0, 194, 217, 238, 35, 35, 0, 1, 0, 1142, 2035, 1008, 728, 70, 56, 0, 1, 0, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1
OFFSET
0,13
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 0, 1]
[3] [0, 1, 0, 1]
[4] [0, 1, 4, 0, 1]
[5] [0, 8, 5, 10, 0, 1]
[6] [0, 26, 58, 15, 20, 0, 1]
[7] [0, 194, 217, 238, 35, 35, 0, 1]
[8] [0, 1142, 2035, 1008, 728, 70, 56, 0, 1]
[9] [0, 9736, 13470, 11611, 3444, 1848, 126, 84, 0, 1]
MATHEMATICA
p[n_] := Sum[Abs[StirlingS1[n, k]] FactorialPower[x, k], {k, 0, n}];
Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten
PROG
(Sage)
def a_row(n):
s = sum(stirling_number1(n, k)*falling_factorial(x, k) for k in (0..n))
return expand(s).list()
[a_row(n) for n in (0..9)]
CROSSREFS
Cf. A079642 (variant), A129062, A325872.
Sequence in context: A372762 A019974 A344373 * A363973 A046781 A244530
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 27 2019
STATUS
approved