login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244530
Number T(n,k) of ordered unlabeled rooted trees with n nodes such that the minimal outdegree of inner nodes equals k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.
11
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 2, 0, 1, 0, 36, 5, 0, 0, 1, 0, 117, 11, 3, 0, 0, 1, 0, 393, 28, 7, 0, 0, 0, 1, 0, 1339, 78, 8, 4, 0, 0, 0, 1, 0, 4630, 201, 21, 9, 0, 0, 0, 0, 1, 0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1, 0, 57201, 1441, 121, 11, 11, 0, 0, 0, 0, 0, 1
OFFSET
1,8
COMMENTS
T(1,0) = 1 by convention.
LINKS
EXAMPLE
T(5,1) = 11:
o o o o o o o o o o o
| | | | / \ / \ / \ | /|\ /|\ /|\
o o o o o o o o o o o o o o o o o o o o
| | / \ / \ | | | | /|\ | | |
o o o o o o o o o o o o o o o o
| / \ | | | |
o o o o o o o
|
o
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 2, 0, 1;
0, 36, 5, 0, 0, 1;
0, 117, 11, 3, 0, 0, 1;
0, 393, 28, 7, 0, 0, 0, 1;
0, 1339, 78, 8, 4, 0, 0, 0, 1;
0, 4630, 201, 21, 9, 0, 0, 0, 0, 1;
0, 16193, 532, 55, 10, 5, 0, 0, 0, 0, 1;
MAPLE
b:= proc(n, t, k) option remember; `if`(n=0,
`if`(t in [0, k], 1, 0), `if`(t>n, 0, add(b(j-1, k$2)*
b(n-j, max(0, t-1), k), j=1..n)))
end:
T:= (n, k)-> b(n-1, k$2) -`if`(n=1 and k=0, 0, b(n-1, k+1$2)):
seq(seq(T(n, k), k=0..n-1), n=1..14);
MATHEMATICA
b[n_, t_, k_] := b[n, t, k] = If[n == 0, If[t == 0 || t == k, 1, 0], If[t>n, 0, Sum[b[j-1, k, k]*b[n-j, Max[0, t-1], k], {j, 1, n}]]]; T[n_, k_] := b[n-1, k, k] - If[n == 1 && k == 0, 0, b[n-1, k+1, k+1]]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jan 13 2015, translated from Maple *)
CROSSREFS
Row sums give A000108(n-1).
Cf. A244454 (unordered unlabeled rooted trees).
Sequence in context: A325873 A363973 A046781 * A372722 A271424 A117435
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Jun 29 2014
STATUS
approved