login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106640
Row sums of A059346.
6
1, 1, 4, 11, 36, 117, 393, 1339, 4630, 16193, 57201, 203799, 731602, 2643903, 9611748, 35130195, 129018798, 475907913, 1762457595, 6550726731, 24428808690, 91377474411, 342763939656, 1289070060903, 4859587760076, 18360668311027, 69514565858653, 263693929034909
OFFSET
0,3
COMMENTS
a(n) = p(n + 1) where p(x) is the unique degree-n polynomial such that p(k) = Catalan(k) for k = 0, 1, ..., n. - Michael Somos, Jan 05 2012
Number of Dyck (n+1)-paths whose minimum ascent length is 1. - David Scambler, Aug 22 2012
From Alois P. Heinz, Jun 29 2014: (Start)
a(n) is the number of ordered rooted trees with n+2 nodes such that the minimal outdegree equals 1. a(2) = 4:
o o o o
| | / \ / \
o o o o o o
| / \ | |
o o o o o
|
o
(End)
Number of non-crossing partitions of {1,2,..,n+1} that contain cyclical adjacencies. a(2) = 4, [12|3, 13|2, 1|23, 123]. - Yuchun Ji, Nov 13 2020
LINKS
FORMULA
G.f.: (sqrt( 1 - 2*x - 3*x^2 ) / (1 + x) - sqrt( 1 - 4*x )) / (2*x^2) = 2 / (sqrt( 1 - 2*x - 3*x^2 ) + (1 + x) * sqrt( 1 - 4*x )). - Michael Somos, Jan 05 2012
a(n) = A000108(n+1) - A005043(n+1).
a(n) ~ 2^(2*n+2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jan 21 2017
a(n) = A000296(n+2) - A247494(n+1); i.e., remove the crossing partitions from the partitions with cyclical adjacencies. - Yuchun Ji, Nov 17 2020
EXAMPLE
1 + x + 4*x^2 + 11*x^3 + 36*x^4 + 117*x^5 + 393*x^6 + 1339*x^7 + 4630*x^8 + ...
a(2) = 4 since p(x) = (x^2 - x + 2) / 2 interpolates p(0) = 1, p(1) = 1, p(2) = 2, and p(3) = 4. - Michael Somos, Jan 05 2012
MAPLE
a:= proc(n) option remember; `if`(n<3, [1, 1, 4][n+1],
((30*n^3-44*n^2-22*n+24)*a(n-1)-(25*n^3-105*n^2+140*n-48)*a(n-2)
-6*(n-1)*(5*n-4)*(2*n-3)*a(n-3))/(n*(n+2)*(5*n-9)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jun 29 2014
MATHEMATICA
max = 30; t = Table[Differences[Table[CatalanNumber[k], {k, 0, max}], n], {n, 0, max}]; a[n_] := Sum[t[[n-k+1, k]], {k, 1, n}]; Array[a, max] (* Jean-François Alcover, Jan 21 2017 *)
PROG
(PARI) {a(n) = if( n<0, 0, n++; subst( polinterpolate( vector(n, k, binomial( 2*k - 2, k - 1) / k)), x, n + 1))} /* Michael Somos, Jan 05 2012 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 / (sqrt( 1 - 2*x - 3*x^2 + A) + (1 + x) * sqrt( 1 - 4*x + A)) , n))} /* Michael Somos, Jan 05 2012 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, May 26 2005
EXTENSIONS
Typo in a(20) corrected and more terms from Alois P. Heinz, Jun 29 2014
STATUS
approved