OFFSET
0,8
COMMENTS
At least one block length occurs exactly k times, and all block lengths occur at least k times.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Partition of a set
EXAMPLE
T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,4) = 1: 1|2|3|4.
T(6,3) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 3, 0, 1;
0, 51, 0, 0, 0, 1;
0, 132, 55, 15, 0, 0, 1;
0, 771, 105, 0, 0, 0, 0, 1;
0, 3089, 945, 0, 105, 0, 0, 0, 1;
0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1;
0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1;
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
T:= (n, k)-> b(n$2, k)-`if`(n=k, 0, b(n$2, k+1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]* b[n-i*j, i-1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; T[n_, k_] := b[n, n, k] - If[n == k, 0, b[n, n, k + 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 16 2017, adapted from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 07 2016
STATUS
approved