login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271424
Number T(n,k) of set partitions of [n] with minimal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 11, 3, 0, 1, 0, 51, 0, 0, 0, 1, 0, 132, 55, 15, 0, 0, 1, 0, 771, 105, 0, 0, 0, 0, 1, 0, 3089, 945, 0, 105, 0, 0, 0, 1, 0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1, 0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1, 0, 627529, 26785, 24255, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,8
COMMENTS
At least one block length occurs exactly k times, and all block lengths occur at least k times.
LINKS
EXAMPLE
T(4,1) = 11: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
T(4,2) = 3: 12|34, 13|24, 14|23.
T(4,4) = 1: 1|2|3|4.
T(6,3) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 1;
0, 11, 3, 0, 1;
0, 51, 0, 0, 0, 1;
0, 132, 55, 15, 0, 0, 1;
0, 771, 105, 0, 0, 0, 0, 1;
0, 3089, 945, 0, 105, 0, 0, 0, 1;
0, 18388, 1218, 1540, 0, 0, 0, 0, 0, 1;
0, 96423, 15456, 3150, 0, 945, 0, 0, 0, 0, 1;
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
T:= (n, k)-> b(n$2, k)-`if`(n=k, 0, b(n$2, k+1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]* b[n-i*j, i-1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; T[n_, k_] := b[n, n, k] - If[n == k, 0, b[n, n, k + 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 16 2017, adapted from Maple *)
CROSSREFS
Row sums give A000110.
Main diagonal gives A000012.
T(2n,n) gives A001147.
T(3n,n) gives A271715.
Cf. A271423.
Sequence in context: A046781 A244530 A372722 * A117435 A282252 A268367
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Apr 07 2016
STATUS
approved