login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271765
Number of set partitions of [n] with minimal block length multiplicity equal to five.
2
1, 0, 0, 0, 0, 945, 0, 0, 0, 0, 4239235, 7567560, 82702620, 41351310, 1658646990, 24448068645, 117626817945, 239611442070, 8260908743395, 1834189492520, 4508736346382576, 2979073800027325, 256635727575051825, 2371542394294648575, 16374593589666387075
OFFSET
5,6
LINKS
FORMULA
a(n) = A271424(n,5).
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 5)-b(n$2, 6):
seq(a(n), n=5..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 5] - b[n, n, 6];
Table[a[n], {n, 5, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A271424.
Sequence in context: A260136 A215838 A145493 * A343330 A133814 A104438
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved