login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271763
Number of set partitions of [n] with minimal block length multiplicity equal to three.
2
1, 0, 0, 15, 0, 0, 1540, 3150, 24255, 81235, 496210, 605605, 36987951, 13833820, 849333940, 24419945732, 111237098546, 1219799147204, 16146398449224, 109697049177254, 1037441240056529, 9042707959752775, 84237798887033660, 614681985047225810
OFFSET
3,4
LINKS
FORMULA
a(n) = A271424(n,3).
EXAMPLE
a(6) = 15: 12|34|56, 12|35|46, 12|36|45, 13|24|56, 13|25|46, 13|26|45, 14|23|56, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
MAPLE
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(multinomial(n, n-i*j, i$j)
*b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))
end:
a:= n-> b(n$2, 3)-b(n$2, 4):
seq(a(n), n=3..30);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];
a[n_] := b[n, n, 3] - b[n, n, 4];
Table[a[n], {n, 3, 30}] (* Jean-François Alcover, May 15 2018, after Alois P. Heinz *)
CROSSREFS
Column k=3 of A271424.
Sequence in context: A324677 A324675 A106239 * A362267 A271339 A202857
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 13 2016
STATUS
approved