login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106239
Triangle read by rows: T(n,m) = number of graphs on n labeled nodes, with m components of size = order. Also number of graphs on n labeled nodes with m unicyclic components.
4
0, 0, 0, 1, 0, 0, 15, 0, 0, 0, 222, 0, 0, 0, 0, 3660, 10, 0, 0, 0, 0, 68295, 525, 0, 0, 0, 0, 0, 1436568, 20307, 0, 0, 0, 0, 0, 0, 33779340, 727020, 280, 0, 0, 0, 0, 0, 0, 880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0, 25201854045, 950478210, 2325015, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,7
COMMENTS
Also the Bell transform of A057500(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
REFERENCES
D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley, 2005, pp. 39, 47.
LINKS
FORMULA
E.g.f.: exp((-y/2)*log(1+LambertW(-x)) + (y/2)*LambertW(-x) - (y/4)*LambertW(-x)^2). - Vladeta Jovovic, May 04 2005
T(n,m) = n! * Sum_{P(n,m)} Product_{p=1..n} f(p)^c_p / (c_p! * p!^c_p), where f(n) = A057500(n) =(n^(n-2)*(1-3*n)+exp(n)*Gamma(n+1,n)/n)/2, and P(n,m) are the partitions of n with m parts p, all p>=3: c_1 + 2*c_2 + ... + n*c_n = n; c_1,c_2, ..., c_n>= 0. - Washington Bomfim, May 03 2005, updated Apr 08 2020
T(n,1) = A057500(n), T(n,m) = Sum_{j=2..n-1} C(n-1,j) * A057500(j+1) * T(n-1-j,m-1) if m>1. - Alois P. Heinz, Sep 15 2008
EXAMPLE
a(30) = T[8,2] = 20307. The partitions of 8 with two parts p, p>=3 are [5*1 + 3*1], and [4*2].
Partition [5*1 + 3*1] corresponds to f(5)^1 * f(3)^1 / ( (1! * 5!^1) * (1! * 3!^1) ) = 222 /(5! * 3!) = 37/120; Partition [4*2] corresponds to f(4)^2 / ( 2! * 4!^2) = 225 / (2*4!^2) = 25/128. Finally 8! * (37/120 + 25/128) = 20307. (See formula).
Triangle T(n,m) begins:
0;
0, 0;
1, 0, 0;
15, 0, 0, 0;
222, 0, 0, 0, 0;
3660, 10, 0, 0, 0, 0;
68295, 525, 0, 0, 0, 0, 0;
1436568, 20307, 0, 0, 0, 0, 0, 0;
33779340, 727020, 280, 0, 0, 0, 0, 0, 0;
880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0;
MAPLE
cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n, m) if m=1 then cy(n) else add (binomial(n-1, j) *cy(j+1) * T(n-1-j, m-1), j=2..n-1) fi end: seq (seq (T(n, m), m=1..n), n=1..11); # Alois P. Heinz, Sep 15 2008
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
a := n -> n!*n^(n-1)/2*add(1/(n^k*(n-k)!), k=3..n);
BellMatrix(n -> a(n+1), 9); # Peter Luschny, Jan 27 2016
MATHEMATICA
nn=12; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]!CoefficientList[ Series[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)], {x, 0, nn}], {x, y}] //Grid (* Geoffrey Critzer, Nov 04 2012 *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[(#+1)! (#+1)^#/2 Sum[1/((#+1)^k (#-k+1)!), {k, 3, #+1}]&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
PROG
(PARI) Row(n)={my(w=lambertw(-x+O(x*x^n))); Vecrev(n!*if(n>=3, polcoef(exp(-y*log(1+w)/2 + y*w/2 - y*w^2/4), n)/y), n)}
{for(n=1, 10, print(Row(n)))} \\ Andrew Howroyd, Apr 06 2020
(PARI) x = 90; D = Set(x); A = t = vector(x);
\p 500 \\ See Peter Luschny formula in A057500.
f = vector(x, n, round( (n^(n-2)*(1-3*n) + exp(n) * incgam(n+1, n) /n)/2) );
T(n, m)={my(p, c, S=0, Pr, cD, j); if(m>floor(n/3), return(0)); if(n>x, return(-1));
forpart(a = n, A = Vec(a); Pr = 1; D = Set(a); cD = #D;
for(j=1, cD, p= D[j]; t= select(x-> x==p, A); c=#t; Pr *= f[p]^c / (c!*p!^c));
S += Pr, [3, n], [m, m]); n! * S }; \\ - Washington Bomfim, Apr 07 2020
CROSSREFS
Cf. A057500, A106238 (similar formulas that can be used in the unlabeled case).
Sequence in context: A287285 A324677 A324675 * A271763 A362267 A271339
KEYWORD
nonn,tabl
AUTHOR
Washington Bomfim, May 03 2005
STATUS
approved