Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #82 Apr 08 2020 01:33:21
%S 0,0,0,1,0,0,15,0,0,0,222,0,0,0,0,3660,10,0,0,0,0,68295,525,0,0,0,0,0,
%T 1436568,20307,0,0,0,0,0,0,33779340,727020,280,0,0,0,0,0,0,880107840,
%U 25934184,31500,0,0,0,0,0,0,0,25201854045,950478210,2325015,0,0,0,0,0,0,0,0
%N Triangle read by rows: T(n,m) = number of graphs on n labeled nodes, with m components of size = order. Also number of graphs on n labeled nodes with m unicyclic components.
%C Also the Bell transform of A057500(n+1). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016
%D D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley, 2005, pp. 39, 47.
%H Alois P. Heinz, <a href="/A106239/b106239.txt">Rows n = 1..141, flattened</a>
%F E.g.f.: exp((-y/2)*log(1+LambertW(-x)) + (y/2)*LambertW(-x) - (y/4)*LambertW(-x)^2). - _Vladeta Jovovic_, May 04 2005
%F T(n,m) = n! * Sum_{P(n,m)} Product_{p=1..n} f(p)^c_p / (c_p! * p!^c_p), where f(n) = A057500(n) =(n^(n-2)*(1-3*n)+exp(n)*Gamma(n+1,n)/n)/2, and P(n,m) are the partitions of n with m parts p, all p>=3: c_1 + 2*c_2 + ... + n*c_n = n; c_1,c_2, ..., c_n>= 0. - _Washington Bomfim_, May 03 2005, updated Apr 08 2020
%F T(n,1) = A057500(n), T(n,m) = Sum_{j=2..n-1} C(n-1,j) * A057500(j+1) * T(n-1-j,m-1) if m>1. - _Alois P. Heinz_, Sep 15 2008
%e a(30) = T[8,2] = 20307. The partitions of 8 with two parts p, p>=3 are [5*1 + 3*1], and [4*2].
%e Partition [5*1 + 3*1] corresponds to f(5)^1 * f(3)^1 / ( (1! * 5!^1) * (1! * 3!^1) ) = 222 /(5! * 3!) = 37/120; Partition [4*2] corresponds to f(4)^2 / ( 2! * 4!^2) = 225 / (2*4!^2) = 25/128. Finally 8! * (37/120 + 25/128) = 20307. (See formula).
%e Triangle T(n,m) begins:
%e 0;
%e 0, 0;
%e 1, 0, 0;
%e 15, 0, 0, 0;
%e 222, 0, 0, 0, 0;
%e 3660, 10, 0, 0, 0, 0;
%e 68295, 525, 0, 0, 0, 0, 0;
%e 1436568, 20307, 0, 0, 0, 0, 0, 0;
%e 33779340, 727020, 280, 0, 0, 0, 0, 0, 0;
%e 880107840, 25934184, 31500, 0, 0, 0, 0, 0, 0, 0;
%p cy:= proc(n) option remember; local t; binomial(n-1, 2) *add ((n-3)! /(n-2-t)! *n^(n-2-t), t=1..n-2) end: T:= proc(n,m) if m=1 then cy(n) else add (binomial(n-1, j) *cy(j+1) * T(n-1-j, m-1), j=2..n-1) fi end: seq (seq (T(n,m), m=1..n), n=1..11); # _Alois P. Heinz_, Sep 15 2008
%p # The function BellMatrix is defined in A264428.
%p # Adds (1,0,0,0, ..) as column 0.
%p a := n -> n!*n^(n-1)/2*add(1/(n^k*(n-k)!), k=3..n);
%p BellMatrix(n -> a(n+1), 9); # _Peter Luschny_, Jan 27 2016
%t nn=12;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[y(Log[1/(1-t)]/2-t/2-t^2/4)],{x,0,nn}],{x,y}] //Grid (* _Geoffrey Critzer_, Nov 04 2012 *)
%t BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t rows = 12;
%t M = BellMatrix[(#+1)! (#+1)^#/2 Sum[1/((#+1)^k (#-k+1)!), {k, 3, #+1}]&, rows];
%t Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 24 2018, after _Peter Luschny_ *)
%o (PARI) Row(n)={my(w=lambertw(-x+O(x*x^n))); Vecrev(n!*if(n>=3, polcoef(exp(-y*log(1+w)/2 + y*w/2 - y*w^2/4), n)/y), n)}
%o {for(n=1, 10, print(Row(n)))} \\ _Andrew Howroyd_, Apr 06 2020
%o (PARI) x = 90; D = Set(x); A = t = vector(x);
%o \p 500 \\ See Peter Luschny formula in A057500.
%o f = vector(x, n, round( (n^(n-2)*(1-3*n) + exp(n) * incgam(n+1,n) /n)/2) );
%o T(n,m)={my(p,c,S=0,Pr,cD,j);if(m>floor(n/3),return(0));if(n>x,return(-1));
%o forpart(a = n, A = Vec(a); Pr = 1; D = Set(a); cD = #D;
%o for(j=1,cD, p= D[j]; t= select(x-> x==p, A); c=#t; Pr *= f[p]^c / (c!*p!^c));
%o S += Pr, [3,n],[m,m]); n! * S };\\ - _Washington Bomfim_, Apr 07 2020
%Y Cf. A057500, A106238 (similar formulas that can be used in the unlabeled case).
%K nonn,tabl
%O 1,7
%A _Washington Bomfim_, May 03 2005