login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271423 Number T(n,k) of set partitions of [n] with maximal block length multiplicity equal to k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 13
1, 0, 1, 0, 1, 1, 0, 4, 0, 1, 0, 5, 9, 0, 1, 0, 16, 25, 10, 0, 1, 0, 82, 70, 35, 15, 0, 1, 0, 169, 406, 245, 35, 21, 0, 1, 0, 541, 2093, 1036, 385, 56, 28, 0, 1, 0, 2272, 10935, 4984, 2331, 504, 84, 36, 0, 1, 0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

At least one block length occurs exactly k times, and all block lengths occur at most k times.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Wikipedia, Partition of a set

EXAMPLE

T(4,1) = 5: 1234, 123|4, 124|3, 134|2, 1|234.

T(4,2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.

T(4,4) = 1: 1|2|3|4.

Triangle T(n,k) begins:

  1;

  0,     1;

  0,     1,     1;

  0,     4,     0,     1;

  0,     5,     9,     0,     1;

  0,    16,    25,    10,     0,    1;

  0,    82,    70,    35,    15,    0,   1;

  0,   169,   406,   245,    35,   21,   0,   1;

  0,   541,  2093,  1036,   385,   56,  28,   0,  1;

  0,  2272, 10935,  4984,  2331,  504,  84,  36,  0, 1;

  0, 17966, 41961, 37990, 13335, 3717, 840, 120, 45, 0, 1;

MAPLE

with(combinat):

b:= proc(n, i, k) option remember; `if`(n=0, 1,

      `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)

        *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))

    end:

T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):

seq(seq(T(n, k), k=0..n), n=0..12);

MATHEMATICA

multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]] * b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]]; T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jan 06 2017, after Alois P. Heinz *)

CROSSREFS

Columns k=0-10 give: A000007, A007837 (for n>0), A271731, A271732, A271733, A271734, A271735, A271736, A271737, A271738, A271739.

Row sums give A000110.

Main diagonal gives A000012.

T(2n,n) gives A271425.

Cf. A271424.

Sequence in context: A272774 A147311 A147312 * A019974 A046781 A244530

Adjacent sequences:  A271420 A271421 A271422 * A271424 A271425 A271426

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 12:40 EST 2018. Contains 317272 sequences. (Running on oeis4.)