The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271715 Number of set partitions of [3n] with minimal block length multiplicity equal to n. 2
 1, 4, 55, 1540, 67375, 4239235, 383563180, 51925673800, 10652498631775, 3139051466175625, 1228555090548911125, 602267334323068414000, 357161594247065690582500, 250870551734754490461422500, 205672479804595549379158525000, 194557626586812183102927448930000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 FORMULA a(n) = A271424(3n,n). Recursion: see Maple program. For n>0, a(n) = (3^n + n!)*(3*n)! / (6^n * (n!)^2). - Vaclav Kotesovec, Apr 16 2016 MAPLE a:= proc(n) option remember; `if`(n<5, [1, 4, 55, 1540, 67375][n+1], ((2*(3*n-2))* (3*n-1)*(n^2-n-9)*a(n-1) -(3*(n-3))*(3*n-1)* (3*n-4)*(3*n-2)*(3*n-5)*a(n-2))/(4*n*(n-4))) end: seq(a(n), n=0..20); MATHEMATICA multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n - i*j}, Array[i&, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]] // Union}]]]; a[n_] := If[n==0, 1, b[3n, 3n, n] - b[3n, 3n, n+1]]; a /@ Range[0, 20] (* Jean-François Alcover, Dec 11 2020, after Alois P. Heinz in A271424 *) CROSSREFS Cf. A271424. Sequence in context: A195634 A322627 A206384 * A099122 A001500 A246968 Adjacent sequences: A271712 A271713 A271714 * A271716 A271717 A271718 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 12 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 18:41 EST 2023. Contains 367614 sequences. (Running on oeis4.)