

A271714


Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 such that (10*w+5*x)^2 + (12*y+36*z)^2 is a square, where w is a positive integer and x,y,z are nonnegative integers.


39



1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 3, 1, 2, 1, 2, 3, 1, 4, 4, 2, 2, 1, 3, 3, 5, 2, 2, 5, 2, 1, 2, 3, 3, 3, 2, 3, 2, 3, 4, 4, 2, 3, 9, 2, 3, 1, 1, 6, 2, 3, 4, 6, 4, 1, 2, 5, 3, 3, 4, 3, 5, 1, 4, 5, 1, 3, 6, 6, 1, 3, 4, 5, 12, 2, 4, 6, 2, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 7, 9, 19, 49, 133, 589, 2^k, 2^k*3, 4^k*q (k = 0,1,2,... and q = 14, 67, 71, 199).
(ii) If P(y,z) is one of 2y3z, 2y8z and 4y6z, then any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that (wx)^2 + P(y,z)^2 is a square.
(iii) For each triple (a,b,c) = (1,4,4), (1,12,12), (2,4,8), (2,6,6), (2,12,12), (3,4,4), (3,4,8), (3,8,8), (3,12,12), (3,12,36), (5,4,4), (5,4,8), (5,8,16), (5,36,36), (6,4,4), (7,12,12), (7,20,20), (7,24,24), (9,4,4), (9,12,12),(9,36,36), (11,12,12), (13,4,4), (15,12,12), (16,12,12), (21,20,20), (21,24,24), (23,12,12), any natural number can be written as w^2 + x^2 + y^2 + z^2 with w,x,y,z nonnegative integers such that (w+a*x)^2 + (b*yc*z)^2 is a square.


LINKS



EXAMPLE

a(2) = 1 since 2 = 1^2 + 1^2 + 0^2 + 0^2 with (10*1+5*1)^2 + (12*0+36*0)^2 = 15^2 + 0^2 = 15^2.
a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with (10*1+5*1)^2 + (12*0+36*1)^2 = 15^2 + 36^2 = 39^2.
a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with (10*2+5*0)^2 + (12*0+36*0)^2 = 20^2 + 0^2 = 20^2.
a(6) = 1 since 6 = 2^2 + 0^2 + 1^2 + 1^2 with (10*2+5*0)^2 + (12*1+36*1)^2 = 20^2 + 48^2 = 52^2.
a(7) = 1 since 7 = 1^2 + 2^2 + 1^2 + 1^2 with (10*1+5*2)^2 + (12*1+36*1)^2 = 20^2 + 48^2 = 52^2.
a(9) = 1 since 9 = 3^2 + 0^2 + 0^2 + 0^2 with (10*3+5*0)^2 + (12*0+36*0)^2 = 30^2 + 0^2 = 30^2.
a(19) = 1 since 19 = 3^2 + 0^2 + 3^2 + 1^2 with (10*3+5*0)^2 + (12*3+36*1)^2 = 30^2 + 72^2 = 78^2.
a(49) = 1 since 49 = 7^2 + 0^2 + 0^2 + 0^2 with (10*7+5*0)^2 + (12*0+36*0)^2 = 70^2 + 0^2 = 70^2.
a(133) = 1 since 133 = 9^2 + 0^2 + 6^2 + 4^2 with (10*9+5*0)^2 + (12*6+36*4)^2 = 90^2 + 216^2 = 234^2.
a(589) = 1 since 589 = 17^2 + 10^2 + 2^2 + 14^2 with (10*17+5*10)^2 + (12*2+36*14)^2 = 220^2 + 528^2 = 572^2.


MATHEMATICA

SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
Do[r=0; Do[If[SQ[nx^2y^2z^2]&&SQ[(10*Sqrt[nx^2y^2z^2]+5x)^2+(12y+36z)^2], r=r+1], {x, 0, Sqrt[n1]}, {y, 0, Sqrt[n1x^2]}, {z, 0, Sqrt[n1x^2y^2]}]; Print[n, " ", r]; Continue, {n, 1, 80}]


CROSSREFS

Cf. A000118, A000290, A271510, A271513, A271518, A271608, A271644, A271665, A271719, A271721, A271724.


KEYWORD

nonn


AUTHOR



STATUS

approved



