login
A379484
a(n) is the highest power of 3 dividing sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
4
1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 1, 1, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 1, 3, 1, 1, 9, 1, 3, 3, 3, 3, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3
OFFSET
1,5
FORMULA
Multiplicative with a(p^e) = A038500((q^(2e+1) - 1)/(q-1)), where q = nextprime(p) = A151800(p).
a(n) = A038500(A379482(n)).
a(n) = A379473(A379481(n)).
MATHEMATICA
{1}~Join~Array[3^IntegerExponent[#, 3] &[
DivisorSigma[1,
Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]]^2]] &,
105, 2] (* Michael De Vlieger, Dec 27 2024 *)
PROG
(PARI) A379484(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); 3^valuation(sigma(factorback(f)), 3); };
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Dec 27 2024
STATUS
approved