login
A379487
a(n) = gcd(n,A003961(n)) * gcd(sigma(n),A276086(n)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.
6
1, 3, 2, 1, 6, 3, 2, 15, 1, 9, 6, 3, 2, 3, 30, 1, 18, 3, 10, 3, 2, 9, 6, 15, 1, 3, 10, 1, 30, 15, 2, 21, 6, 9, 42, 63, 2, 15, 14, 45, 42, 3, 2, 21, 30, 9, 6, 3, 1, 3, 6, 7, 18, 15, 2, 15, 10, 45, 30, 105, 2, 3, 2, 1, 42, 3, 2, 21, 6, 63, 18, 45, 2, 3, 10, 35, 66, 21, 10, 3, 1, 63, 42, 21, 2, 3, 30, 45, 90, 15, 14, 21
OFFSET
1,2
FORMULA
a(n) = A322361(n) * A324644(n).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A379487(n) = { my(s=sigma(n), x=A003961(n), y=A276086(n)); (gcd(n, x)*gcd(s, y)); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 02 2025
STATUS
approved