login
A379485
a(n) = 1 if gcd(n,A003961(n))*gcd(sigma(n),A276086(n)) is equal to gcd(n,A276086(n))*gcd(sigma(n),A003961(n)), otherwise 0, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.
4
1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = [gcd(n,A003961(n)) * gcd(sigma(n),A276086(n)) = gcd(n,A276086(n)) * gcd(sigma(n),A003961(n))], where [ ] is the Iverson bracket.
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A379485(n) = { my(s=sigma(n), x=A003961(n), y=A276086(n)); (gcd(n, x)*gcd(s, y))==(gcd(n, y)*gcd(s, x)); };
CROSSREFS
Characteristic function of A379486.
Sequence in context: A167501 A285533 A185175 * A322586 A147612 A323509
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 01 2025
STATUS
approved