login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185175
a(n) = A010815(7*n + 5).
1
1, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^4, b = -x^3.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Quintuple Product Identity
FORMULA
Expansion of f(-x^5, -x^16) - x * f(-x^2, -x^19) = f(-x^7, -x^14) * f(-x, -x^6) / f(-x^3, -x^4) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 7 sequence [-1, 0, 1, 1, 0, -1, -1, ...].
G.f.: Sum_{k in Z} (-1)^k * x^(7*k * (3*k + 1) / 2) * (x^(9*k + 3) + x^(-9*k)).
G.f.: Product_{k>0} (1 - x^(7*k)) * (1 - x^(7*k - 1)) * (1 - x^(7*k - 6)) / ((1 - x^(7*k - 3)) * (1 - x^(7*k - 4))).
EXAMPLE
G.f. = 1 - x + x^3 - x^5 - x^16 + x^20 - x^26 + x^31 + x^53 - x^60 + x^70 + ...
G.f. = q^121 - q^289 + q^625 - q^961 - q^2809 + q^3481 - q^4489 + q^5329 + q^9025 + ...
MATHEMATICA
f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; A185175[n_] := SeriesCoefficient[f[-x^7, -x^14]*f[-x, -x^6]/ f[-x^3, -x^4], {x, 0, n}]; Table[A185175[n], {n, 0, 50}] (* G. C. Greubel, Jun 19 2017 *)
nmax = 100; CoefficientList[Series[Product[(1 - x^(7*k)) * (1 - x^(7*k-1)) * (1 - x^(7*k-6)) / ((1 - x^(7*k-3)) * (1 - x^(7*k-4))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 20 2017 *)
a[ n_] := With[{m = Sqrt[168 n + 121]}, If[ IntegerQ@m, KroneckerSymbol[ 12, m], 0]]; (* Michael Somos, Jun 27 2017 *)
a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{1, 0, -1, -1, 0, 1, 1}[[Mod[k, 7, 1]]], {k, n}], {x, 0, n}]; (* Michael Somos, Jun 27 2017 *)
PROG
(PARI) {a(n) = my(m); if( issquare( 168*n + 121, &m), kronecker( 12, m))};
(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x*O(x^n))^[1, 1, 0, -1, -1, 0, 1][k%7+1]), n))}; /* Michael Somos, Jun 27 2017 */
CROSSREFS
Cf. A010815.
Sequence in context: A190242 A167501 A285533 * A379485 A322586 A147612
KEYWORD
sign
AUTHOR
Michael Somos, Jan 21 2012
STATUS
approved