login
A379483
a(n) is the number of trailing 1-bits in the binary representation of sigma(A003961(n^2)), where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
2
1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 3, 3, 2, 1, 3, 1, 1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 2, 1, 1, 2, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 5, 1, 7, 1, 2, 4, 4, 1, 1, 2, 2, 1, 4, 6, 1, 3, 1, 3, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 7, 4, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 7, 4, 1, 2, 1, 2, 6, 1, 2, 1, 1, 3, 1, 6, 2
OFFSET
1,3
FORMULA
a(n) = A007814(1+A379482(n)).
a(n) = A379222(A048673(n)).
MATHEMATICA
{1}~Join~Array[Length@ Last@ Split[IntegerDigits[#, 2]][[1 ;; -1 ;; 2]] &[
DivisorSigma[1,
Apply[Times, Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]] ]^2] ] &,
105, 2] (* Michael De Vlieger, Dec 27 2024 *)
PROG
(PARI) A379483(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1); f[i, 2] *= 2); valuation(1+sigma(factorback(f)), 2); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 27 2024
STATUS
approved