login
A256503
Smallest k>=1 such that n^2 + (n+1)^2 + ... + (n+k)^2 is prime or a(n)=0 if there is no such k.
4
1, 1, 5, 1, 1, 2, 1, 0, 1, 0, 0, 1, 5, 1, 0, 0, 1, 5, 1, 0, 5, 1, 5, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 5, 1, 0, 0, 1, 0, 0, 0, 0, 1, 5, 0, 1, 5, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 5, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 0, 5, 1, 0, 1, 1, 2, 1
OFFSET
1,3
COMMENTS
Every term is either 0 or 1 or 2 or 5.
a(n)=0 if and only if n is in A256385.
FORMULA
1) if 2n^2+2n+1 is prime, then a(n)=1;
2) if 2n^2+2n+1 is not prime, but 3n^2+6n+5 is prime, then a(n)=2;
3) if 2n^2+2n+1 and 3n^2+6n+5 are both composite numbers, but 6n^2+30n+55 is prime, then a(n)=5;
4) otherwise, a(n)=0.
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 31 2015
EXTENSIONS
More terms from Peter J. C. Moses, Mar 31 2015
STATUS
approved