OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..2500
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * eta(q^6)^5 * eta(q^32) * eta(q^48)^2 / (eta(q^3)^2 * eta(q^12)^2 * eta(q^16) * eta(q^96)) in powers of q.
Euler transform of a period 96 sequence.
a(n) = A257403(3*n + 2) unless n == 5 (mod 8).
a(4*n + 1) = a(4*n + 2) = a(8*n + 7) = a(16*n + 4) = a(16*n + 8) = 0.
EXAMPLE
G.f. = 1 + 2*x^3 + 2*x^12 + x^16 + 2*x^19 + 2*x^27 + 2*x^28 + x^32 + ...
G.f. = q^2 + 2*q^11 + 2*q^38 + q^50 + 2*q^59 + 2*q^83 + 2*q^86 + q^98 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] EllipticTheta[ 4, 0, x^48] QPochhammer[ -x^16, x^16], {x, 0, n}];
PROG
(PARI) {a(n) = my(A, p, e); if( n<0 || n%8 == 5, 0, A = factor(3*n + 2); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p<5, p+e==3, p%8 > 4, 1-e%2, e+1)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 * eta(x^32 + A) * eta(x^48 + A)^2 / (eta(x^3 + A)^2 * eta(x^12 + A)^2 * eta(x^16 + A) * eta(x^96 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 22 2015
STATUS
approved