login
A257398
Expansion of phi(-x^6)^2 / chi(-x) in powers of x where phi(), chi() are Ramanujan theta functions.
6
1, 1, 1, 2, 2, 3, 0, 1, 2, 0, 2, 0, 3, 2, 2, 3, 0, 2, 2, 2, 0, 0, 1, 0, 2, 2, 1, 4, 2, 4, 0, 0, 2, 0, 4, 1, 0, 0, 4, 2, 1, 0, 2, 2, 0, 0, 0, 2, 2, 4, 2, 1, 2, 4, 2, 2, 0, 1, 0, 0, 4, 0, 2, 4, 0, 0, 0, 2, 0, 2, 3, 0, 0, 2, 2, 2, 2, 3, 2, 0, 4, 0, 4, 2, 2, 0, 0
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(x^3) * f(x, x^2) in powers of x where phi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
Expansion of q^(-1/24) * eta(q^2) * eta(q^6)^4 / (eta(q) * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [1, 0, 1, 0, 1, -4, 1, 0, 1, 0, 1, -2, ...].
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + x^7 + 2*x^8 + 2*x^10 + ...
G.f. = q + q^25 + q^49 + 2*q^73 + 2*q^97 + 3*q^121 + q^169 + 2*q^193 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] EllipticTheta[ 4, 0, x^6] ^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A)^4 / (eta(x + A) * eta(x^12 + A)^2), n))};
CROSSREFS
Sequence in context: A160115 A139365 A071479 * A182631 A231728 A303545
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Apr 21 2015
STATUS
approved