The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A231728 Triangular array read by rows: row n shows the coefficients of the polynomial u(n) = c(0) + c(1)*x + ... + c(2n)*x^(2n) which is the numerator of the n-th convergent of the continued fraction [k, k, k, ... ], where k = (x^2 + 1)/(x + 1). 1
1, 0, 1, 2, 2, 3, 0, 1, 3, 4, 7, 4, 5, 0, 1, 5, 10, 19, 16, 16, 6, 7, 0, 1, 8, 20, 42, 48, 55, 36, 29, 8, 9, 0, 1, 13, 40, 94, 132, 164, 138, 119, 64, 46, 10, 11, 0, 1, 21, 76, 197, 324, 451, 464, 439, 304, 219, 100, 67, 12, 13, 0, 1, 34, 142, 405, 760, 1170 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Sum of numbers in row n: 2*A087206(n). Left edge: A000045 (Fibonacci numbers).
LINKS
EXAMPLE
First 3 rows:
1 . . . 0 . . . 1
2 . . . 2 . . . 3 . . . 0 . . . 1
3 . . . 4 . . . 7 . . . 4 . . . 5 . . . 0 . . . 1
First 3 polynomials: 1 + x^2, 2 + 2*x + 3*x^2 + x^4.
MATHEMATICA
t[n_] := t[n] = Table[(1 + x^2)/(1 + x), {k, 0, n}];
b = Table[Factor[Convergents[t[n]]], {n, 0, 10}];
p[x_, n_] := p[x, n] = Last[Expand[Numerator[b]]][[n]];
u = Table[p[x, n], {n, 1, 10}]
v = CoefficientList[u, x]; Flatten[v]
CROSSREFS
Sequence in context: A071479 A257398 A182631 * A303545 A306191 A290125
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Nov 13 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 22:02 EDT 2024. Contains 372765 sequences. (Running on oeis4.)