login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231725
Least positive integer k < n such that n + k + 2^k is prime, or 0 if such an integer k does not exist.
5
0, 1, 0, 1, 2, 3, 2, 1, 4, 1, 2, 3, 2, 1, 10, 1, 2, 3, 6, 1, 4, 5, 2, 5, 2, 1, 4, 1, 8, 3, 2, 3, 4, 1, 2, 3, 2, 1, 4, 1, 2, 3, 6, 1, 12, 5, 2, 3, 8, 1, 4, 5, 2, 11, 2, 1, 6, 1, 4, 3, 2, 3, 4, 1, 2, 5, 2, 1, 4, 1, 22, 3, 2, 57, 10, 1, 2, 3, 6, 1, 4, 11, 2, 11, 8, 1, 4, 7, 4, 3, 2, 3, 4, 1, 2, 3, 2, 1, 16, 1
OFFSET
1,5
COMMENTS
This was motivated by A231201 and A231557.
Conjecture: a(n) > 0 for all n > 3. We have verified this for n up to 2*10^6; for example, we find the following relatively large values of a(n): a(65958) = 37055, a(299591) = 51116, a(295975) = 13128, a(657671) = 25724, a(797083) = 44940, a(1278071) = 24146, a(1299037) = 34502, a(1351668) = 25121, a(1607237) = 34606, a(1710792) = 11187, a(1712889) = 18438.
I conjecture the opposite. In particular I expect that a(n) = 0 for infinitely many values of n. - Charles R Greathouse IV, Nov 13 2013
LINKS
Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
EXAMPLE
a(3) = 0 since 3 + 1 + 2^1 = 6 and 3 + 2 + 2^2 = 9 are both composite.
a(5) = 2 since 5 + 1 + 2^1 = 8 is not prime, but 5 + 2 + 2^2 = 11 is prime.
MATHEMATICA
Do[Do[If[PrimeQ[n+k+2^k], Print[n, " ", k]; Goto[aa]], {k, 1, n-1}];
Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 100}]
PROG
(PARI) a(n)=for(k=1, n-1, if(ispseudoprime(n+k+2^k), return(k))); 0 \\ Charles R Greathouse IV, Nov 13 2013
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 12 2013
STATUS
approved