login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231561
Number of ways to write n = x + y with 0 < x <= y such that 2^x * y + 1 is prime.
11
0, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 3, 2, 1, 4, 5, 2, 2, 3, 3, 2, 2, 2, 4, 4, 3, 5, 4, 4, 3, 5, 4, 5, 4, 3, 3, 2, 3, 5, 5, 4, 4, 3, 3, 7, 5, 6, 4, 6, 5, 4, 6, 5, 5, 5, 3, 5, 6, 7, 8, 4, 4, 3, 4, 2, 3, 5, 6, 7, 7, 4, 3, 6, 6, 6, 8, 3, 4, 7, 7, 6, 6, 5, 7, 6, 7, 8, 5, 6, 5, 7, 2, 5, 5, 7, 5, 7, 6, 10, 8
OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 1. Also, any integer n > 1 can be written as x + y (x, y > 0) with 2^x * y^2 + 1 prime.
(ii) Each integer n > 2 can be written as x + y (x, y > 0) with 2^x * y - 1 prime. Also, every n = 3, 4, ... can be expressed as x + y (x, y > 0) with 2^x * y^2 - 1 prime.
EXAMPLE
a(7) = 1 since 7 = 1 + 6 with 2^1 * 6 + 1 = 13 prime.
a(14) = 1 since 14 = 3 + 11 with 2^3 * 11 + 1 = 89 prime.
MATHEMATICA
a[n_]:=Sum[If[PrimeQ[2^x*(n-x)+1], 1, 0], {x, 1, n/2}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 11 2013
STATUS
approved