login
A231562
Numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n).
5
39607528021345872635, 118822584064037617905, 198037640106729363175, 356467752192112853715, 435682808234804598985, 514897864277496344255, 594112920320188089525, 673327976362879834795, 752543032405571580065, 910973144490955070605, 990188200533646815875
OFFSET
1,1
COMMENTS
The number 8490421583559688410706771261086 occurring in the name is the 8th term of A230311.
The numbers in A230311 are the values of k such that the set {n : A031971(k*n)== n (mod k*n)} is nonempty.
MATHEMATICA
fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, 1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k, n], Mod[Car[k, n] - n/2, ]]; Select[39607528021345872635*Range[15], supercar[8490421583559688410706771261086*#, 8490421583559688410706771261086*#] == # &]
CROSSREFS
Cf. A231562 (numbers n such that A031971(8490421583559688410706771261086*n) == n (mod 8490421583559688410706771261086*n)).
Cf. A229312 (numbers n such that A031971(47058*n) == n (mod 47058*n)).
Cf. A229300 (numbers n such that A031971(1806*n)== n (mod n*1806)).
Cf. A229301 (numbers n such that A031971(42*n) == n (mod 42*n)).
Cf. A229302 (numbers n such that A031971(6*n) == n (mod 6*n)).
Cf. A229303 (numbers n such that A031971(2*n) == n (mod 2*n)).
Cf. A229313 (numbers n such that A031971(47058*n) <> n (mod 47058*n)).
Cf. A229304 (numbers n such that A031971(1806*n) <> n (mod n*1806)).
Cf. A229305 (numbers n such that A031971(42*n) <> n (mod 42*n)).
Cf. A229306 (numbers n such that A031971(6*n) <> n (mod 6*n)).
Cf. A229307 (numbers n such that A031971(2*n) <> n (mod 2*n)).
Cf. A229308 (primitive numbers in A229304).
Cf. A229309 (primitive numbers in A229305).
Cf. A229310 (primitive numbers in A229306).
Cf. A229311 (primitive numbers in A229307).
Sequence in context: A288290 A219321 A020476 * A257370 A104283 A003852
KEYWORD
nonn
AUTHOR
STATUS
approved