login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231559
a(n) = floor( A000326(n)/2 ).
2
0, 0, 2, 6, 11, 17, 25, 35, 46, 58, 72, 88, 105, 123, 143, 165, 188, 212, 238, 266, 295, 325, 357, 391, 426, 462, 500, 540, 581, 623, 667, 713, 760, 808, 858, 910, 963, 1017, 1073, 1131, 1190, 1250, 1312, 1376, 1441, 1507, 1575, 1645, 1716, 1788, 1862, 1938
OFFSET
0,3
COMMENTS
First trisection of A011865.
FORMULA
G.f.: x^2*(2 + x^2)/((1 + x^2)*(1 - x)^3).
a(n) = ( n*(3*n-1) + i^(n*(n+1)) - 1 )/4, where i=sqrt(-1).
MATHEMATICA
Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3), {x, 0, 70}], x] (* or *) LinearRecurrence[{3, -4, 4, -3, 1}, {0, 0, 2, 6, 11}, 70] (* Harvey P. Dale, Jan 28 2022 *)
PROG
(Magma) [Floor(n*(3*n-1)/4): n in [0..60]];
CROSSREFS
Cf. pentagonal numbers: A000326.
Cf. A011848 for the triangular numbers: floor(A000217/2); A007590 for the squares: floor(A000290/2); A156859 for the hexagonal numbers: floor(A000384/2).
First differences: A047262.
Sequence in context: A046691 A098167 A081689 * A104813 A239698 A039745
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 11 2013
STATUS
approved