Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:06
%S 0,0,2,6,11,17,25,35,46,58,72,88,105,123,143,165,188,212,238,266,295,
%T 325,357,391,426,462,500,540,581,623,667,713,760,808,858,910,963,1017,
%U 1073,1131,1190,1250,1312,1376,1441,1507,1575,1645,1716,1788,1862,1938
%N a(n) = floor( A000326(n)/2 ).
%C First trisection of A011865.
%H Bruno Berselli, <a href="/A231559/b231559.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-4,4,-3,1).
%F G.f.: x^2*(2 + x^2)/((1 + x^2)*(1 - x)^3).
%F a(n) = ( n*(3*n-1) + i^(n*(n+1)) - 1 )/4, where i=sqrt(-1).
%t Table[Floor[n (3 n - 1)/4], {n, 0, 60}]
%t CoefficientList[Series[x^2(2+x^2)/((1+x^2)(1-x)^3),{x,0,70}],x] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,0,2,6,11},70] (* _Harvey P. Dale_, Jan 28 2022 *)
%o (Magma) [Floor(n*(3*n-1)/4): n in [0..60]];
%Y Cf. pentagonal numbers: A000326.
%Y Cf. A011848 for the triangular numbers: floor(A000217/2); A007590 for the squares: floor(A000290/2); A156859 for the hexagonal numbers: floor(A000384/2).
%Y First differences: A047262.
%K nonn,easy
%O 0,3
%A _Bruno Berselli_, Nov 11 2013