login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047262
Numbers that are congruent to {0, 2, 4, 5} mod 6.
3
0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 38, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 65, 66, 68, 70, 71, 72, 74, 76, 77, 78, 80, 82, 83, 84, 86, 88, 89, 90, 92, 94, 95, 96, 98
OFFSET
1,2
COMMENTS
The sequence is the interleaving of A047233 with A016789(n-1). - Guenther Schrack, Feb 14 2019
FORMULA
From R. J. Mathar, Oct 08 2011: (Start)
G.f.: x^2*(2+x^2) / ( (1+x^2)*(1-x)^2 ).
a(n) = 3*n/2 - 1 - sin(Pi*n/2)/2. (End)
From Wesley Ivan Hurt, May 21 2016: (Start)
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n > 4.
a(n) = (6*n - 4 - i^(1-n) + i^(1+n))/4, where i = sqrt(-1).
a(2*n) = A016789(n-1) for n>0, a(2*n-1) = A047233(n).
a(2-n) = - A047237(n), a(n-1) = A047273(n) - 1 for n > 1. (End)
From Guenther Schrack, Feb 14 2019: (Start)
a(n) = (6*n - 4 - (1 - (-1)^n)*(-1)^(n*(n-1)/2))/4.
a(n) = a(n-4) + 6, a(1)=0, a(2)=2, a(3)=4, a(4)=5, for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = log(3)/4 + log(2)/3 - sqrt(3)*Pi/36. - Amiram Eldar, Dec 17 2021
MAPLE
A047262:=n->(6*n-4-I^(1-n)+I^(1+n))/4: seq(A047262(n), n=1..100); # Wesley Ivan Hurt, May 21 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 2, 4, 5}, Mod[#, 6]]&] (* or *) LinearRecurrence[{2, -2, 2, -1}, {0, 2, 4, 5}, 70] (* Harvey P. Dale, Dec 09 2015 *)
PROG
(Magma) [n : n in [0..100] | n mod 6 in [0, 2, 4, 5]]; // Wesley Ivan Hurt, May 21 2016
(PARI) my(x='x+O('x^70)); concat([0], Vec(x^2*(2+x^2)/((1+x^2)*(1-x)^2))) \\ G. C. Greubel, Feb 16 2019
(Sage) a=(x^2*(2+x^2)/((1+x^2)*(1-x)^2)).series(x, 72).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 16 2019
CROSSREFS
Complement: A047241.
Sequence in context: A285354 A050505 A340932 * A361233 A285143 A274436
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 21 2016
STATUS
approved