|
|
A047241
|
|
Numbers that are congruent to {1, 3} mod 6.
|
|
30
|
|
|
1, 3, 7, 9, 13, 15, 19, 21, 25, 27, 31, 33, 37, 39, 43, 45, 49, 51, 55, 57, 61, 63, 67, 69, 73, 75, 79, 81, 85, 87, 91, 93, 97, 99, 103, 105, 109, 111, 115, 117, 121, 123, 127, 129, 133, 135, 139, 141, 145, 147, 151, 153, 157, 159, 163, 165, 169, 171, 175, 177, 181, 183
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Also the numbers k such that 10^p+k could possibly be prime. - Roderick MacPhee, Nov 20 2011 This statement can be written as follows. If 10^m + k = prime, for any m >= 1, then k is in this sequence. See the pink box comments by Roderick MacPhee from Dec 09 2014. - Wolfdieter Lang, Dec 09 2014
The odd-indexed terms are one more than the arithmetic mean of their neighbors; the even-indexed terms are one less than the arithmetic mean of their neighbors. - Amarnath Murthy, Jul 29 2003
Partial sums are A212959. - Philippe Deléham, Mar 16 2014
12*a(n) is conjectured to be the length of the boundary after n iterations of the hexagon and square expansion shown in the link. The squares and hexagons have side length 1 in some units. The pattern is supposed to become the planar Archimedean net 4.6.12 when n -> infinity. - Kival Ngaokrajang, Nov 30 2014
Positive numbers k for which 1/2 + k/3 + k^2/6 is an integer. - Bruno Berselli, Apr 12 2018
|
|
REFERENCES
|
L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Springer (2003); 14.4, p. 225.
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
L. Lovasz, J. Pelikan, K. Vesztergombi, Discrete Mathematics, Elementary and Beyond, Springer (2003); 14.4, p. 225.
Kival Ngaokrajang, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
|
|
FORMULA
|
From Paul Barry, Sep 04 2003: (Start)
O.g.f.: (1 + 2*x + 3*x^2)/((1 + x)*(1 - x)^2) = (1 + 2*x + 3*x^2)/((1 - x)*(1 - x^2)).
E.g.f.: (6*x + 1)*exp(x)/2 + exp(-x)/2;
a(n) = 3*n - 5/2 - (-1)^n/2. (End)
a(n) = 2*floor((n-1)/2) + 2*n - 1. - Gary Detlefs, Mar 18 2010
a(n) = 6*n - a(n-1) - 8 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 05 2010
a(n) = 3*n - 2 - ((n+1) mod 2). - Wesley Ivan Hurt, Jun 29 2013
a(1)=1, a(2)=3, a(3)=7; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Oct 01 2013
From Benedict W. J. Irwin, Apr 13 2016: (Start)
A005408(a(n)+1) = A016813(A001651(n)),
A007310(a(n)) = A005408(A087444(n)-1),
A007310(A005408(a(n)+1)) = A017533(A001651(n)). (End)
|
|
MAPLE
|
seq(3*k-2-((k+1) mod 2), k=1..100); # Wesley Ivan Hurt, Sep 28 2013
|
|
MATHEMATICA
|
Table[{2, 4}, {30}] // Flatten // Prepend[#, 1]& // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
Select[Range[200], MemberQ[{1, 3}, Mod[#, 6]]&] (* or *) LinearRecurrence[{1, 1, -1}, {1, 3, 7}, 70] (* Harvey P. Dale, Oct 01 2013 *)
|
|
PROG
|
(Haskell)
a047241 n = a047241_list !! (n-1)
a047241_list = 1 : 3 : map (+ 6) a047241_list
-- Reinhard Zumkeller, Feb 19 2013
(PARI) a(n)=bitor(3*n-3, 1) \\ Charles R Greathouse IV, Sep 28 2013
(Python) for n in range(1, 10**5):print(3*n-2-((n+1)%2)) # Soumil Mandal, Apr 14 2016
|
|
CROSSREFS
|
Cf. A047233, A056970, A007310, A047228, A047261, A047273.
Subsequence of A186422.
Union of A016921 and A016945. - Wesley Ivan Hurt, Sep 28 2013
Sequence in context: A087550 A235387 A285144 * A086515 A132222 A320634
Adjacent sequences: A047238 A047239 A047240 * A047242 A047243 A047244
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
Formula corrected by Bruno Berselli, Jun 24 2010
|
|
STATUS
|
approved
|
|
|
|