login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047243
Numbers that are congruent to {2, 3} mod 6.
6
2, 3, 8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50, 51, 56, 57, 62, 63, 68, 69, 74, 75, 80, 81, 86, 87, 92, 93, 98, 99, 104, 105, 110, 111, 116, 117, 122, 123, 128, 129, 134, 135, 140, 141, 146, 147, 152, 153, 158, 159, 164, 165, 170, 171, 176, 177, 182, 183
OFFSET
1,1
COMMENTS
Solutions to 3^x - 2^x == 5 (mod 7). - Cino Hilliard, May 09 2003
REFERENCES
Emil Grosswald, Topics From the Theory of Numbers, 1966, p. 65, problem 23.
FORMULA
a(n) = 6*n - 7 - a(n-1), with a(1)=2. - Vincenzo Librandi, Aug 05 2010
G.f.: x*(2+x+3*x^2) / ( (1+x)*(1-x)^2 ). - R. J. Mathar, Oct 08 2011
From Guenther Schrack, Jun 21 2019: (Start)
a(n) = a(n-2) + 6 with a(1)=2, a(2)=3 for n > 2;
a(n) = 3*n - 2 - (-1)^n. (End)
E.g.f.: 3 - 3*(1-x)*cosh(x) - (1-3*x)*sinh(x). - G. C. Greubel, Jun 30 2019
E.g.f.: 3 + (3*x-3)*exp(x) + 2*sinh(x). - David Lovler, Jul 16 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(12*sqrt(3)) + log(3)/4 - log(2)/3. - Amiram Eldar, Dec 13 2021
MATHEMATICA
Select[Range[0, 210], MemberQ[{2, 3}, Mod[#, 6]] &] (* or *)
Fold[Append[#1, 6 #2 - Last@ #1 - 7] &, {2}, Range[2, 70]] (* or *)
Rest@ CoefficientList[Series[x(2+x+3x^2)/((1+x)(1-x)^2), {x, 0, 70}], x] (* Michael De Vlieger, Jan 12 2018 *)
PROG
(PARI) vector(70, n, 3*n-2-(-1)^n) \\ G. C. Greubel, Jun 30 2019
(Magma) [3*n-2-(-1)^n: n in [1..70]]; // G. C. Greubel, Jun 30 2019
(Sage) [3*n-2-(-1)^n for n in (1..70)] # G. C. Greubel, Jun 30 2019
(GAP) List([1..70], n-> 3*n-2-(-1)^n) # G. C. Greubel, Jun 30 2019
CROSSREFS
Cf. A030531. Complement of A047260.
Sequence in context: A281111 A301917 A327312 * A277094 A099148 A309423
KEYWORD
nonn,easy
EXTENSIONS
More terms from Cino Hilliard, May 09 2003
STATUS
approved