

A047243


Numbers that are congruent to {2, 3} mod 6.


6



2, 3, 8, 9, 14, 15, 20, 21, 26, 27, 32, 33, 38, 39, 44, 45, 50, 51, 56, 57, 62, 63, 68, 69, 74, 75, 80, 81, 86, 87, 92, 93, 98, 99, 104, 105, 110, 111, 116, 117, 122, 123, 128, 129, 134, 135, 140, 141, 146, 147, 152, 153, 158, 159, 164, 165, 170, 171, 176, 177, 182, 183
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Solutions to 3^x  2^x == 5 (mod 7).  Cino Hilliard, May 09 2003


REFERENCES

Emil Grosswald, Topics From the Theory of Numbers. 1966 p 65 problem 23


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (1,1,1).


FORMULA

a(n) = 6*n  7  a(n1), with a(1)=2.  Vincenzo Librandi, Aug 05 2010
G.f.: x*(2+x+3*x^2) / ( (1+x)*(1x)^2 ).  R. J. Mathar, Oct 08 2011
From Guenther Schrack, Jun 21 2019: (Start)
a(n) = a(n2) + 6 with a(1)=2, a(2)=3 for n > 2;
a(n) = 3*n  2  (1)^n. (End)
E.g.f.: 3  3*(1x)*cosh(x)  (13*x)*sinh(x).  G. C. Greubel, Jun 30 2019


MATHEMATICA

Select[Range[0, 210], MemberQ[{2, 3}, Mod[#, 6]] &] (* or *)
Fold[Append[#1, 6 #2  Last@ #1  7] &, {2}, Range[2, 70]] (* or *)
Rest@ CoefficientList[Series[x(2+x+3x^2)/((1+x)(1x)^2), {x, 0, 70}], x] (* Michael De Vlieger, Jan 12 2018 *)


PROG

(PARI) vector(70, n, 3*n2(1)^n) \\ G. C. Greubel, Jun 30 2019
(MAGMA) [3*n2(1)^n: n in [1..70]]; // G. C. Greubel, Jun 30 2019
(Sage) [3*n2(1)^n for n in (1..70)] # G. C. Greubel, Jun 30 2019
(GAP) List([1..70], n> 3*n2(1)^n) # G. C. Greubel, Jun 30 2019


CROSSREFS

Cf. A030531. Complement of A047260.
Sequence in context: A281111 A301917 A327312 * A277094 A099148 A309423
Adjacent sequences: A047240 A047241 A047242 * A047244 A047245 A047246


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


EXTENSIONS

More terms from Cino Hilliard, May 09 2003


STATUS

approved



