|
|
A309423
|
|
Numbers k with property that there is an m = m(k) such that m(m+1)/2 divides k(k+1)/2 and m(k) > m(i) for all i < k.
|
|
0
|
|
|
2, 3, 8, 9, 14, 20, 35, 77, 84, 99, 119, 231, 260, 351, 494, 696, 1665, 1785, 1845, 3479, 4059, 6887, 16302, 17919, 23183, 23660, 56979, 58800, 81968, 83880, 95930, 137903, 340955, 358017, 574925, 803760, 1336139, 3375111, 4684659, 10316619, 14935095, 18610022
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
gcd(a(n),m(n)) < m(n), n > 1.
Let k = r * m, and r = (A000217(k) * (m+1))/((A000217(m) * (k+1)). For known terms 1 < r < 4.
|
|
LINKS
|
|
|
EXAMPLE
|
|
|
MATHEMATICA
|
m=1; L={2}; k=2; While[k < 10000, k++; tr = k (k + 1)/2; t = SelectFirst[ Reverse@ Divisors[2 tr], # != k && Mod[tr, # (# + 1)/2] == 0 &]; If[t > m, AppendTo[L, k]; m = t]]; L (* Giovanni Resta, Sep 05 2019 *)
|
|
PROG
|
(PARI) T(n) = {return((n * (n+1)) / 2)}
Tk(n, k) = {for (i = k, n - 1, if ((T(n)%T(i))==0, return(i+1)))}
Tn(n) = {phwm = 1; for (i = 2, n, nhwm = Tk(i, phwm); if(nhwm > phwm, phwm = nhwm; print1(i, ", ")))}
Tn(5000000)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|