OFFSET
1,1
COMMENTS
Conjecturally, this can be computed using a recursion formula discovered by an algorithm called "The Ramanujan Machine":
1*1
4/(3*Pi-8) = 3 - --------------------
2*3
6 - ----------------
3*5
9 - ------------
4*7
12 - --------
15 - ... .
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Gal Raayoni, George Pisha, Yahel Manor, Uri Mendlovic, Doron Haviv, Yaron Hadad, Ido Kaminer, The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants, arXiv:1907.00205 [cs.LG], 2019-2020.
The Ramanujan Machine, Using algorithms to discover new mathematics
EXAMPLE
2.80745499308537947657159669392697176828889127774792...
MAPLE
nn:= 126: # number of digits
# b:= i-> `if`(i<4*nn, 3*i -i*(2*i-1)/b(i+1), 1):
# evalf(b(1), nn);
evalf(4/(3*Pi-8), nn);
MATHEMATICA
RealDigits[4/(3 Pi-8), 10, 120][[1]] (* Harvey P. Dale, May 09 2021 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Alois P. Heinz, Jul 30 2019
STATUS
approved