login
A309419
Decimal expansion of e/(e-2).
5
3, 7, 8, 4, 4, 2, 2, 3, 8, 2, 3, 5, 4, 6, 6, 5, 6, 2, 8, 7, 5, 3, 1, 0, 5, 7, 5, 6, 9, 5, 9, 6, 3, 3, 0, 5, 6, 7, 4, 7, 9, 5, 6, 7, 7, 0, 6, 3, 0, 5, 7, 4, 2, 4, 7, 1, 8, 2, 6, 4, 9, 1, 3, 4, 1, 6, 6, 5, 5, 9, 1, 4, 0, 9, 2, 3, 2, 2, 1, 8, 5, 3, 3, 8, 3, 4, 2, 1, 1, 7, 4, 5, 3, 5, 2, 2, 5, 9, 9, 7, 7, 7, 7, 1, 3, 7
OFFSET
1,1
COMMENTS
This can be computed using a recursion formula discovered by an algorithm called "The Ramanujan Machine":
1
e/(e-2) = 4 - --------------------
2
5 - ----------------
3
6 - ------------
4
7 - --------
8 - ... .
For a proof by humans see the arXiv:1907.00205 preprint linked below.
LINKS
Gal Raayoni, George Pisha, Yahel Manor, Uri Mendlovic, Doron Haviv, Yaron Hadad, and Ido Kaminer, The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants, arXiv:1907.00205 [cs.LG], 2019-2020.
FORMULA
Equals 1/A334397.
EXAMPLE
3.78442238235466562875310575695963305674795677063...
MAPLE
nn:= 126: # number of digits
b:= i-> `if`(i<nn, i+3 -i/b(i+1), 1):
evalf(b(1), nn);
MATHEMATICA
RealDigits[E/(E-2), 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Alois P. Heinz, Jul 30 2019
STATUS
approved