OFFSET
1,1
COMMENTS
This can be computed using a recursion formula discovered by an algorithm called "The Ramanujan Machine":
1
e/(e-2) = 4 - --------------------
2
5 - ----------------
3
6 - ------------
4
7 - --------
8 - ... .
For a proof by humans see the arXiv:1907.00205 preprint linked below.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000
Gal Raayoni, George Pisha, Yahel Manor, Uri Mendlovic, Doron Haviv, Yaron Hadad, and Ido Kaminer, The Ramanujan Machine: Automatically Generated Conjectures on Fundamental Constants, arXiv:1907.00205 [cs.LG], 2019-2020.
The Ramanujan Machine, Using algorithms to discover new mathematics.
FORMULA
Equals 1/A334397.
EXAMPLE
3.78442238235466562875310575695963305674795677063...
MAPLE
nn:= 126: # number of digits
b:= i-> `if`(i<nn, i+3 -i/b(i+1), 1):
evalf(b(1), nn);
MATHEMATICA
RealDigits[E/(E-2), 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Alois P. Heinz, Jul 30 2019
STATUS
approved