
2, 8, 0, 7, 3, 5, 4, 9, 2, 2, 0, 5, 7, 6, 0, 4, 1, 0, 7, 4, 4, 1, 9, 6, 9, 3, 1, 7, 2, 3, 1, 8, 3, 0, 8, 0, 8, 6, 4, 1, 0, 2, 6, 6, 2, 5, 9, 6, 6, 1, 4, 0, 7, 8, 3, 6, 7, 7, 2, 9, 1, 7, 2, 4, 0, 7, 0, 3, 2, 0, 8, 4, 8, 8, 6, 2, 1, 9, 2, 9, 8, 6, 4, 9, 7, 8, 6, 0, 9, 9, 9, 1, 7, 0, 2, 1, 0, 7, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000
L. Adleman, Molecular Computation of Solutions to Combinatorial Problems, Science 266 (1994): 10211024.
Aran Nayebi, Fast matrix multiplication techniques based on the AdlemanLipton model, arXiv:0912.0750 [qbio.QM], 20092011.
D. K. Nguyen, I. LavallĂ©e, and M. Bui, A New Direction to Parallelize Winograd's Algorithm on Distributed Memory Computers, Modeling, Simulation and Optimization of Complex Processes Proceedings of the Third International Conference on High Performance Scientific Computing, March 610, 2006, Hanoi, Vietnam: 445457.
V. Pan, How can we speed up matrix multiplication?, SIAM Review, 26 (1984): 393416.
S. Robinson, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News 38 (2005): 13.
V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969): 354356. MR 40:2223.
Yahoo Questions, Prove log(base 2)7 is rational?
Index entries for transcendental numbers


EXAMPLE

2.807354922...


MATHEMATICA

RealDigits[Log[2, 7], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)


PROG

(PARI) log(7)/log(2) \\ Charles R Greathouse IV, May 15 2019


CROSSREFS

Cf. A002162, A016630.
Sequence in context: A268813 A242056 A195009 * A309420 A246725 A188934
Adjacent sequences: A020857 A020858 A020859 * A020861 A020862 A020863


KEYWORD

nonn,cons


AUTHOR

N. J. A. Sloane


STATUS

approved

