|
2, 8, 0, 7, 3, 5, 4, 9, 2, 2, 0, 5, 7, 6, 0, 4, 1, 0, 7, 4, 4, 1, 9, 6, 9, 3, 1, 7, 2, 3, 1, 8, 3, 0, 8, 0, 8, 6, 4, 1, 0, 2, 6, 6, 2, 5, 9, 6, 6, 1, 4, 0, 7, 8, 3, 6, 7, 7, 2, 9, 1, 7, 2, 4, 0, 7, 0, 3, 2, 0, 8, 4, 8, 8, 6, 2, 1, 9, 2, 9, 8, 6, 4, 9, 7, 8, 6, 0, 9, 9, 9, 1, 7, 0, 2, 1, 0, 7, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
L. Adleman, Molecular Computation of Solutions to Combinatorial Problems, Science 266 (1994): 1021-1024.
Aran Nayebi, Fast matrix multiplication techniques based on the Adleman-Lipton model, arXiv:0912.0750 [q-bio.QM], 2009-2011.
D. K. Nguyen, I. Lavallée, and M. Bui, A New Direction to Parallelize Winograd's Algorithm on Distributed Memory Computers, Modeling, Simulation and Optimization of Complex Processes Proceedings of the Third International Conference on High Performance Scientific Computing, March 6-10, 2006, Hanoi, Vietnam: 445-457.
V. Pan, How can we speed up matrix multiplication?, SIAM Review, 26 (1984): 393-416.
S. Robinson, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News 38 (2005): 1-3.
V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13 (1969): 354-356. MR 40:2223.
Yahoo Questions, Prove log(base 2)7 is rational?
Index entries for transcendental numbers
|
|
EXAMPLE
|
2.807354922...
|
|
MATHEMATICA
|
RealDigits[Log[2, 7], 10, 100][[1]] (* Vincenzo Librandi, Aug 29 2013 *)
|
|
PROG
|
(PARI) log(7)/log(2) \\ Charles R Greathouse IV, May 15 2019
|
|
CROSSREFS
|
Cf. A002162, A016630.
Sequence in context: A242056 A195009 A337997 * A309420 A246725 A188934
Adjacent sequences: A020857 A020858 A020859 * A020861 A020862 A020863
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|