OFFSET
1,2
COMMENTS
The fractional part of the binary logarithm of 3 * 2^n (A007283) is the same as that of any number of the form log_2 (A007283(n)) (e.g., log_2(192) = 7.5849625...). Furthermore, a necessary but not sufficient condition for a number to be Fibbinary (A003714) is that the fractional part of its binary logarithm does not exceed that of this number. - Alonso del Arte, Jun 22 2012
Log_2(3)-1 = 0.58496... is the exponent in n^(log_2(3)-1), the asymptotic growth rate of the number of odd coefficients in (1+x)^n mod 2 (Cf. Steven Finch ref.). - Jean-François Alcover, Aug 13 2014
Equals the Hausdorff dimension of the Sierpiński triangle. - Stanislav Sykora, May 27 2015
The complexity of Karatsuba algorithm for the multiplication of two n-digit numbers is O(n^log_2(3)). - Jianing Song, Apr 28 2019
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.16, p. 145.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
E. G. Dunne, Pianos and Continued Fractions
Shalom Eliahou, Le problème 3n+1 : y a-t-il des cycles non triviaux? (III), Images des Mathématiques, CNRS, 2011 (in French).
Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008, p. 1.
Karatsuba, The Complexity of Computations, Proceedings of the Steklov Institute of Mathematics, 1995: 169-183.
Youngik Lee, Numerical Approach on Collatz Conjecture, Preprints.org, Brown Univ., 2024. See p. 13.
Simon Plouffe, log(3)/log(2) to 10000 digits
A. M. Reiter, Determining the dimension of fractals generated by Pascal's triangle, Fibonacci Quart, 31(2):112-120, 1993.
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
Eric Weisstein's World of Mathematics, Pascal's Triangle
Eric Weisstein's World of Mathematics, Sierpiński Sieve
Wikipedia, Karatsuba algorithm
Wikipedia, Sierpinski triangle
FORMULA
Equals 1 / A102525. - Bernard Schott, Feb 02 2023
EXAMPLE
log_2(3) = 1.5849625007211561814537389439...
MAPLE
evalf(log[2](3), 100); # Bernard Schott, Feb 02 2023
MATHEMATICA
RealDigits[Log[2, 3], 10, 100][[1]] (* Alonso del Arte, Jun 22 2012 *)
PROG
(PARI) log(3)/log(2) \\ Michel Marcus, Jan 11 2016
CROSSREFS
Cf. decimal expansion of log_2(m): this sequence, A020858 (m=5), A020859 (m=6), A020860 (m=7), A020861 (m=9), A020862 (m=10), A020863 (m=11), A020864 (m=12), A152590 (m=13), A154462 (m=14), A154540 (m=15), A154847 (m=17), A154905 (m=18), A154995 (m=19), A155172 (m=20), A155536 (m=21), A155693 (m=22), A155793 (m=23), A155921 (m=24).
Cf. A102525.
KEYWORD
AUTHOR
EXTENSIONS
Comment generalized by J. Lowell, Apr 26 2014
STATUS
approved