The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A334116 a(n) is the least number k greater than n such that the square roots of both k and n have continuous fractions with the same period p and, if p > 1, the same periodic terms except for the last term. 1
 1, 5, 8, 4, 10, 12, 32, 15, 9, 17, 40, 20, 74, 33, 24, 16, 26, 39, 1880, 30, 112, 660, 96, 35, 25, 37, 104, 299, 338, 42, 77600, 75, 60, 78, 48, 36, 50, 84, 68, 87, 130, 56, 288968, 468, 350, 3242817, 192, 63, 49, 65, 200, 2726, 1042, 1628, 180, 72, 308, 425, 5880, 95 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Note that a(n)=n if n is a square. The square root of a squarefree integer n has a continued fraction of the form [e(0);[e(1),...,e(p)]] with e(p)=2e(0) and e(i)=e(p-i) for 0 < i < p, see reference. The symmetric part [e(1),...,e(p-1)] of the continued fraction [m;[e(1),...,e(p-1), 2m]] will be called the pattern of n. 2 has the empty pattern (sqrt(2)=[1,[2]]), 3 has the pattern [1] (sqrt(3)=[1,[1,2]]) and so on. In this sense, the description of the sequence can be simplified as "Least number greater than n with the same pattern". It can be can proved (see link) that integers with the same pattern are terms of a quadratic sequence. An ambiguity has to be fixed: sqrt(2)=[1,[2]] = [1,[2,2]] = [1,[2,2,2]] and so on. We define that the shortest pattern is correct, here it is empty. Comment on the third subsequence (2),6,12,... below: The second term 6 has the pattern [2], but the first term 2 in brackets has the "wrong" pattern, after fixing the ambiguity. REFERENCES Kenneth H. Rosen, Elementary number theory and its applications, Addison-Wesley, 3rd ed. 1993, page 428. LINKS Chai Wah Wu, Table of n, a(n) for n = 1..138 Gerhard Kirchner, Continued fractions with the same pattern EXAMPLE 1) p=1: f(1)=2, f(2)=a(2)=5, f(3)=a(5)=10, f(4)=a(10)=17,.. sqrt(2)=[1,[2]], sqrt(5)=[2,[4]], sqrt(10)=[3,[6]], sqrt(17)=[4,[8]],.. 2) p=2: f(1)=3, f(2)=a(3)=8, f(3)=a(8)=15, f(4)=a(15)=24,.. sqrt(3)=[1,[1,2]], sqrt(8)=[2,[1,4]], sqrt(15)=[3,[1,6]], sqrt(24)=[4,[1,8]],.. 3) p=3: f(1)=41, f(2)=a(41)=130, f(3)=a(130)=269,.. sqrt(41)=[6,[2,2,12]], sqrt(130)=[11,[2,2,121]], sqrt(269)=[16,[2,2,256]],.. 4) p=4: f(1)=33, f(2)=a(33)=60, f(3)=a(60)=95,.. sqrt(33)=[5,[1,2,1,10]], sqrt(60)=[7,[1,2,1,49]], sqrt(95)=[9,[1,2,1,81]],.. Several subsequences f(k) with f(k+1)=a(f(k)). k>1 if first term in brackets, k>0 otherwise. First terms Period Formula Example 1) 2,5,10,17 1 A002522(k)=k^2+1 1 2) 3,8,15,24 2 A005563(k)=(k+1)^2-1 2 3)(2),6,12 2 A002378(k)=k*(k+1) 4) 7,32,75 4 A013656(k)=k*(9*k-2) 5) 11,40,87 2 A147296(k)=k*(9*k+2) 6) 13,74,185 5 A154357(k)=25*k^2-14*k+2 7) (3),14,33 4 A033991(k)=k*(4*k-1) 4 8) (5),18,39 2 A007742(k)=k*(4*k+1) 9) 21,112,275 6 A157265(k)=36*k^2-17*k+2 10)23,96,219 4 A154376(k)=25*k^2-2*k 11)27,104,231 2 A154377(k)=25*k^2+2*k 12)28,299,858 4 A156711(k)=144*k^2-161*k+45 13)29,338,985 5 A156640(k)=169*k^2+140*k+29 14)(8),34,78 4 A154516(k)=9*k^2-k 15)(10),38,84 2 A154517(k)=9*k^2+k 16)(2),41,130 3 A154355(k)=25*k^2-36*k+13 3 17)47,192,435 4 A157362(k)=49*k^2-2*k PROG (Maxima) block([nmax: 100], /*saves the first nmax terms in the current directory*/ algebraic: true, local(coeff), showtime: true, fl: openw(sconcat("terms", nmax, ".txt")), coeff(w, m):= block(a: m, p: 0, s: w, vv:[], while a<2*m do (p: p+1, s: ratsimp(1/(s-floor(s))), a: floor(s), if a<2*m then vv: append(vv, [a])), j: floor((p-1)/2), if mod(p, 2)=0 then v: [1, 0, vv[j+1]] else v: [0, 1, 1], for i from j thru 1 step(-1) do (h: vv[i], u: [v[1]+h*v[3], v[3], 2*h*v[1]+v[2]+h^2*v[3]], v: u), return(v)), for n from 1 thru nmax do (w: sqrt(n), m: floor(w), if w=m then b: n else (v: coeff(w, m), x: v[1], y: v[2], z: v[3], q: mod(z, 2), if q=0 then (z: z/2, y: y/2) else x: 2*x, fr: (x*m+y)/z, m: m+z, fr: fr+x, b: m^2+fr), printf( fl, "~d, ", b)), close(fl)); (Python) from sympy import floor, S, sqrt def coeff(w, m): a, p, s, vv = m, 0, w, [] while a < 2*m: p += 1 s = S.One/(s-floor(s)) a = floor(s) if a < 2*m: vv.append(a) j = (p-1)//2 v = [0, 1, 1] if p % 2 else [1, 0, vv[j]] for i in range(j-1, -1, -1): h = vv[i] v = [v[0]+h*v[2], v[2], 2*h*v[0]+v[1]+h**2*v[2]] return v def A334116(n): w = sqrt(n) m = floor(w) if w == m: return n else: x, y, z = coeff(w, m) if z % 2: x *= 2 else: z //= 2 y //= 2 return (m+z)**2+x+(x*m+y)//z # Chai Wah Wu, Sep 30 2021, after Maxima code CROSSREFS Cf. A002522, A005563, A002378, A013656, A147296, A154357, A033991, A007742, A157265, A154376, A154377, A156711, A156640, A154516, A154517, A154355, A157362. Sequence in context: A011095 A020857 A096413 * A222591 A299447 A300085 Adjacent sequences: A334113 A334114 A334115 * A334117 A334118 A334119 KEYWORD nonn AUTHOR Gerhard Kirchner, Apr 14 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)