login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154377
a(n) = 25*n^2 + 2*n.
4
27, 104, 231, 408, 635, 912, 1239, 1616, 2043, 2520, 3047, 3624, 4251, 4928, 5655, 6432, 7259, 8136, 9063, 10040, 11067, 12144, 13271, 14448, 15675, 16952, 18279, 19656, 21083, 22560, 24087, 25664, 27291, 28968, 30695, 32472, 34299, 36176
OFFSET
1,1
COMMENTS
The identity (1250*n^2 + 100*n + 1)^2 - (25*n^2 + 2*n)*(250*n + 10)^2 = 1 can be written as A154375(n)^2 - a(n)*A154379(n)^2 = 1 (see also the second comment in A154375). - Vincenzo Librandi, Jan 30 2012
The continued fraction expansion of sqrt(4*a(n)) is [10n; {2, 1, 1, 5n-1, 1, 1, 2, 20n}]. - Magus K. Chu, Sep 27 2022
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(27 + 23*x)/(1-x)^3.
E.g.f.: (25*x^2 + 27*x)*exp(x). - G. C. Greubel, Sep 15 2016
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {27, 104, 231}, 50]
PROG
(PARI) a(n)=25*n^2+2*n \\ Charles R Greathouse IV, Dec 23 2011
CROSSREFS
Sequence in context: A256646 A323034 A031429 * A232283 A036923 A036346
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 08 2009
STATUS
approved