login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256646
26-gonal pyramidal numbers: a(n) = n*(n+1)*(8*n-7)/2.
2
0, 1, 27, 102, 250, 495, 861, 1372, 2052, 2925, 4015, 5346, 6942, 8827, 11025, 13560, 16456, 19737, 23427, 27550, 32130, 37191, 42757, 48852, 55500, 62725, 70551, 79002, 88102, 97875, 108345, 119536, 131472, 144177, 157675, 171990, 187146, 203167, 220077
OFFSET
0,3
COMMENTS
See comments in A256645.
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (24th row of the table).
FORMULA
G.f.: x*(1 + 23*x)/(1 - x)^4.
a(n) = A000292(n) + 23*A000292(n-1).
a(n) = n*A051866(n) - Sum_{i=0..n-1} A051866(i). - Bruno Berselli, Apr 09 2015
Sum_{n>=1} 1/a(n) = 2*(4*(sqrt(2)+1)*Pi - 4*(sqrt(2)-8)*log(2) + 8*sqrt(2)*log(sqrt(2)+2) - 7)/105. - Amiram Eldar, Jan 10 2022
E.g.f.: (1/2)*x*(2 + 25*x + 8*x^2)*exp(x). - G. C. Greubel, Jul 12 2024
MATHEMATICA
Table[n (n + 1) (8 n - 7)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 27, 102}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
PROG
(Magma) [n*(n+1)*(8*n-7)/2: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015
(SageMath) [(8*n-7)*binomial(n+1, 2) for n in range(51)] # G. C. Greubel, Jul 12 2024
CROSSREFS
Partial sums of A255185.
Cf. similar sequences listed in A237616.
Sequence in context: A197619 A033659 A010015 * A323034 A031429 A154377
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 07 2015
STATUS
approved