login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A256648 28-gonal pyramidal numbers: a(n) = n*(n+1)*(26*n-23)/6. 2
0, 1, 29, 110, 270, 535, 931, 1484, 2220, 3165, 4345, 5786, 7514, 9555, 11935, 14680, 17816, 21369, 25365, 29830, 34790, 40271, 46299, 52900, 60100, 67925, 76401, 85554, 95410, 105995, 117335, 129456, 142384, 156145, 170765, 186270, 202686, 220039, 238355 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

See comments in A256645.

This sequence is related to A051867 by a(n) = n*A051867(n) - Sum_{i=0..n-1} A051867(i). [Bruno Berselli, Apr 09 2015]

REFERENCES

E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (26th row of the table).

LINKS

Luciano Ancora, Table of n, a(n) for n = 0..1000

Luciano Ancora, Polygonal and Pyramidal numbers, Section 3.

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x*(1 + 25*x)/(1 - x)^4.

a(n) = A000292(n) + 25*A000292(n-1).

MATHEMATICA

Table[n (n + 1)(26 n - 23)/6, {n, 0, 40}]

LinearRecurrence[{4, -6, 4, -1}, {0, 1, 29, 110}, 40] (* Vincenzo Librandi, Apr 08 2015 *)

PROG

(Magma) [n*(n+1)*(26*n-23)/6: n in [0..50]]; // Vincenzo Librandi, Apr 08 2015

CROSSREFS

Partial sums of A161935.

Cf. similar sequences listed in A237616.

Cf. A000292, A051867.

Sequence in context: A044280 A044661 A010017 * A297508 A232780 A232787

Adjacent sequences:  A256645 A256646 A256647 * A256649 A256650 A256651

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Apr 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 6 12:00 EDT 2022. Contains 357264 sequences. (Running on oeis4.)