login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256645
25-gonal pyramidal numbers: a(n) = n*(n+1)*(23*n-20)/6.
9
0, 1, 26, 98, 240, 475, 826, 1316, 1968, 2805, 3850, 5126, 6656, 8463, 10570, 13000, 15776, 18921, 22458, 26410, 30800, 35651, 40986, 46828, 53200, 60125, 67626, 75726, 84448, 93815, 103850, 114576, 126016, 138193, 151130, 164850, 179376, 194731, 210938
OFFSET
0,3
COMMENTS
If b(n,k) = n*(n+1)*((k-2)*n-(k-5))/6 is n-th k-gonal pyramidal number, then b(n,k) = A000292(n) + (k-3)*A000292(n-1) (see Deza in References section, p. 96).
Also, b(n,k) = b(n,k-1) + A000292(n-1) (see Deza in References section, p. 95). Some examples:
for k=4, A000330(n) = A000292(n) + A000292(n-1);
for k=5, A002411(n) = A000330(n) + A000292(n-1);
for k=6, A002412(n) = A002411(n) + A000292(n-1), etc.
This is the case k=25.
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93 (23rd row of the table).
FORMULA
G.f.: x*(1 + 22*x)/(1 - x)^4.
a(n) = A000292(n) + 22*A000292(n-1) = A256716(n) + A000292(n-1), see comments.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Colin Barker, Apr 07 2015
MATHEMATICA
Table[n (n + 1) (23 n - 20)/6, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 26, 98}, 40] (* Vincenzo Librandi, Apr 08 2015 *)
PROG
(PARI) concat(0, Vec(x*(1 + 22*x)/(1 - x)^4 + O(x^100))) \\ Colin Barker, Apr 07 2015
(Magma) k:=25; [n*(n+1)*((k-2)*n-(k-5))/6: n in [0..40]]; // Vincenzo Librandi, Apr 08 2015
CROSSREFS
Partial sums of A255184.
Cf. similar sequences listed in A237616.
Sequence in context: A038654 A010014 A095796 * A175549 A159541 A144129
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Apr 07 2015
STATUS
approved