login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095796
1 + (26*n+17+7*n^2)*n/2.
1
1, 26, 98, 238, 467, 806, 1276, 1898, 2693, 3682, 4886, 6326, 8023, 9998, 12272, 14866, 17801, 21098, 24778, 28862, 33371, 38326, 43748, 49658, 56077, 63026, 70526, 78598, 87263, 96542, 106456
OFFSET
0,2
COMMENTS
Multiply the n-th power of the 4 X 4 matrix [1 0 0 0 / 1 1 0 0 / 2 3 1 0 / 6 12 7 1] by the column vector [1 1 1 1] from the right. Then a(n) is the last component of the vector that results, and A095794(n) the penultimate component.
FORMULA
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
G.f. ( 1+22*x-2*x^3 ) / (x-1)^4 . - R. J. Mathar, Nov 05 2011
EXAMPLE
806 = a(5) since M65 * [1 1 1 1] = [1 6 56 806] where 56 = A095794(5).
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 26, 98, 238}, 40] (* Vincenzo Librandi, Jun 24 2012 *)
Table[1+(26n+17+7n^2)n/2, {n, 0, 30}] (* or *) CoefficientList[Series[ (1+ 22x- 2x^3)/(-1+x)^4, {x, 0, 30}], x]
PROG
(Magma) I:=[1, 26, 98, 238]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 24 2012
CROSSREFS
Cf. A095794.
Sequence in context: A259291 A038654 A010014 * A256645 A175549 A159541
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 06 2004
STATUS
approved