OFFSET
0,2
COMMENTS
Multiply the n-th power of the 4 X 4 matrix [1 0 0 0 / 1 1 0 0 / 2 3 1 0 / 6 12 7 1] by the column vector [1 1 1 1] from the right. Then a(n) is the last component of the vector that results, and A095794(n) the penultimate component.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4).
G.f. ( 1+22*x-2*x^3 ) / (x-1)^4 . - R. J. Mathar, Nov 05 2011
EXAMPLE
806 = a(5) since M65 * [1 1 1 1] = [1 6 56 806] where 56 = A095794(5).
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 26, 98, 238}, 40] (* Vincenzo Librandi, Jun 24 2012 *)
Table[1+(26n+17+7n^2)n/2, {n, 0, 30}] (* or *) CoefficientList[Series[ (1+ 22x- 2x^3)/(-1+x)^4, {x, 0, 30}], x]
PROG
(Magma) I:=[1, 26, 98, 238]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jun 24 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 06 2004
STATUS
approved