login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095794
a(n) = A005449(n) - 1, where A005449 = second pentagonal numbers.
26
1, 6, 14, 25, 39, 56, 76, 99, 125, 154, 186, 221, 259, 300, 344, 391, 441, 494, 550, 609, 671, 736, 804, 875, 949, 1026, 1106, 1189, 1275, 1364, 1456, 1551, 1649, 1750, 1854, 1961, 2071, 2184, 2300, 2419, 2541, 2666, 2794, 2925, 3059, 3196, 3336, 3479, 3625
OFFSET
1,2
COMMENTS
Row sums of triangle A131414.
Equals binomial transform of (1,5,3,0,0,0,...). Equals A051340 * (1,2,3,...).
a(n) is essentially the case -1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} (k-2)*i-(k-3). Thus P_{-1}(n) = n*(5-3*n)/2 and a(n) = -P_{-1}(n+2). - Peter Luschny, Jul 08 2011
Beginning with n=2, a(n) is the falling diagonal starting with T(1,3) in A049777 (as a square array). - Bob Selcoe, Oct 27 2014
FORMULA
a(n) = (3/2)*n^2 + (1/2)*n - 1 = (n+1)*(3*n-2)/2.
a(n) = A126890(n+1,n-2) for n>1. - Reinhard Zumkeller, Dec 30 2006, corrected by Jason Bandlow (jbandlow(AT)math.upenn.edu), Feb 28 2009
G.f.: x*(-1-3*x+x^2)/(-1+x)^3 = 1 - 3/(-1+x)^3 - 4/(-1+x)^2. - R. J. Mathar, Nov 19 2007
a(n) = n*A016777(n-1) - Sum_{i=1..n-2} A016777(i) - (n-1) = (n+1)*(3*n-2)/2. - Bruno Berselli, May 04 2010
a(n) = 3*n + a(n-1)-1, for n>1, a(1)=1. - Vincenzo Librandi, Nov 16 2010
a(n) = A115067(-n). - Bruno Berselli, Sep 02 2011
From Wesley Ivan Hurt, Dec 22 2015: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
a(n) = Sum_{i=n..2n} (i-1). (End)
E.g.f.: 1 + exp(x)*(3*x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 04 2021
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = Pi/(5*sqrt(3)) + 3*log(3)/5 + 2/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/(5*sqrt(3)) + 4*log(2)/5 - 2/5. (End)
a(n) = A000217(n) + A000290(n) - 1. - Leo Tavares, Jun 02 2023
EXAMPLE
a(4) = 25 = A005449(4) - 1.
a(5) = 39 = (3/2)*5^2 + (1/2)*5 - 1.
a(7) = 76 = 3*56 - 3*39 + 25.
a(5) = 39 = right term of M^4 * [1 1 1] = [1 5 39].
For n = 8, a(8) = 8*22 - (1+4+7+10+13+16+19) - 7 = 99. - Bruno Berselli, May 04 2010
MAPLE
A005449 := proc(n) RETURN(n*(3*n+1)/2) ; end: A095794 := proc(n) RETURN(A005449(n)-1) ; end: for n from 1 to 100 do printf("%a, ", A095794(n)) ; od: # R. J. Mathar, Jun 23 2006
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]-3 od: seq(-a[n], n=2..50); # Zerinvary Lajos, Feb 18 2008
MATHEMATICA
FoldList[## + 2 &, 1, 3 Range@ 45] (* Robert G. Wilson v, Feb 03 2011 *)
LinearRecurrence[{3, -3, 1}, {1, 6, 14}, 50] (* Harvey P. Dale, Dec 09 2013 *)
PROG
(PARI) a(n)=(3/2)*n^2+(1/2)*n-1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(3/2)*n^2 + (1/2)*n - 1 : n in [1..50]]; // Wesley Ivan Hurt, Dec 22 2015
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jun 06 2004, Jul 08 2007
EXTENSIONS
Corrected and extended by R. J. Mathar, Jun 23 2006
STATUS
approved