The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095794 a(n) = A005449(n) - 1, where A005449 = second pentagonal numbers. 23
 1, 6, 14, 25, 39, 56, 76, 99, 125, 154, 186, 221, 259, 300, 344, 391, 441, 494, 550, 609, 671, 736, 804, 875, 949, 1026, 1106, 1189, 1275, 1364, 1456, 1551, 1649, 1750, 1854, 1961, 2071, 2184, 2300, 2419, 2541, 2666, 2794, 2925, 3059, 3196, 3336, 3479, 3625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row sums of triangle A131414. Equals binomial transform of (1,5,3,0,0,0,..). Equals A051340 * (1,2,3,..). a(n) is essentially the case -1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} (k-2)*i-(k-3). Thus P_{-1}(n) = n*(5-3*n)/2 and a(n) = -P_{-1}(n+2). - Peter Luschny, Jul 08 2011 Beginning with n=2, a(n) is the falling diagonal starting with T(1,3) in A049777 (as a square array). - Bob Selcoe, Oct 27 2014 LINKS Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = (3/2)*n^2 + (1/2)*n - 1. a(n) = A126890(n+1,n-2) for n>1. - Reinhard Zumkeller, Dec 30 2006, corrected by Jason Bandlow (jbandlow(AT)math.upenn.edu), Feb 28 2009 G.f.: x*(-1-3*x+x^2)/(-1+x)^3 = 1 - 3/(-1+x)^3 - 4/(-1+x)^2. - R. J. Mathar, Nov 19 2007 a(n) = n*A016777(n-1) - Sum_{i=1..n-2} A016777(i) - (n-1) = (n+1)*(3*n-2)/2. - Bruno Berselli, May 04 2010 a(n) = 3*n + a(n-1)-1, for n>1, a(1)=1. - Vincenzo Librandi, Nov 16 2010 a(n) = A115067(-n). - Bruno Berselli, Sep 02 2011 From Wesley Ivan Hurt, Dec 22 2015: (Start) a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. a(n) = Sum_{i=n..2n} (i-1). (End) E.g.f.: 1 + exp(x)*(3*x^2 + 4*x - 2)/2. - Stefano Spezia, Jun 04 2021 EXAMPLE 1. a(4) = 25 = A005449(4) - 1. 2. a(5) = 39 = (3/2)*5^2 + (1/2)*5 - 1. 3. a(7) = 76 = 3*56 - 3*39 + 25. 4. a(5) = 39 = right term of M^4 * [1 1 1] = [1 5 39]. For n = 8, a(8) = 8*22 - (1+4+7+10+13+16+19) - 7 = 99. - Bruno Berselli, May 04 2010 MAPLE A005449 := proc(n) RETURN(n*(3*n+1)/2) ; end: A095794 := proc(n) RETURN(A005449(n)-1) ; end: for n from 1 to 100 do printf("%a, ", A095794(n)) ; od: # R. J. Mathar, Jun 23 2006 a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]-3 od: seq(-a[n], n=2..50); # Zerinvary Lajos, Feb 18 2008 MATHEMATICA a[n_] := Sum[i+n-2, {i, n+1}]; Table[a[n], {n, 50}] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2008 *) s = 1; lst = {s}; Do[s += n + 4; AppendTo[lst, s], {n, 1, 200, 3}]; lst (* Zerinvary Lajos, Jul 11 2009 *) Table[Sum[i+n-3, {i, n}], {n, 2, 50}] (* Zerinvary Lajos, Jul 11 2009 *) FoldList[## + 2 &, 1, 3 Range@ 45] (* Robert G. Wilson v, Feb 03 2011 *) LinearRecurrence[{3, -3, 1}, {1, 6, 14}, 50] (* Harvey P. Dale, Dec 09 2013 *) PROG (PARI) a(n)=(3/2)*n^2+(1/2)*n-1 \\ Charles R Greathouse IV, Sep 24 2015 (MAGMA) [(3/2)*n^2 + (1/2)*n - 1 : n in [1..50]]; // Wesley Ivan Hurt, Dec 22 2015 CROSSREFS Cf. A000217, A005449, A016777, A049777, A051340, A115067, A126890, A131414. Sequence in context: A317333 A010740 A185594 * A119867 A293400 A026055 Adjacent sequences:  A095791 A095792 A095793 * A095795 A095796 A095797 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jun 06 2004, Jul 08 2007 EXTENSIONS Corrected and extended by R. J. Mathar, Jun 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 23:37 EDT 2021. Contains 345367 sequences. (Running on oeis4.)