login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095792
a(n) = Z(n) - L(n), where Z=A072649 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation.
3
0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,1
LINKS
FORMULA
a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise.
EXAMPLE
Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111.
Thus Z(11)=5, L(11)=4 and a(11)=5-4=1.
MATHEMATICA
t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 0, 0, ___}]; (* maximal, lazy *)
t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 1, 1, ___}]; (* minimal, Zeckendorf *)
m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *)
(* Peter J. C. Moses, Mar 03 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 05 2004
STATUS
approved