The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095792 a(n) = Z(n) - L(n), where Z=A072649 and L=A095791 are lengths of Zeckendorf and lazy Fibonacci representations in binary notation. 3
 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Amiram Eldar, Table of n, a(n) for n = 0..10000 FORMULA a(n)=0 if n is of the form F(k)-1 for k>=1 and a(n)=1 otherwise. EXAMPLE Zeckendorf-binary of 11 is 10100; lazy-Fibonacci-binary of 11 is 1111. Thus Z(11)=5, L(11)=4 and a(11)=5-4=1. MATHEMATICA t1 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 0, 0, ___}]; (* maximal, lazy *) t2 = DeleteCases[IntegerDigits[-1 + Range[5001], 2], {___, 1, 1, ___}];  (* minimal, Zeckendorf *) m = Map[Length, t2] - Take[Map[Length, t1], Length[t2]] (* A095792 *) (* Peter J. C. Moses, Mar 03 2015 *) CROSSREFS Cf. A000045, A072649, A095791. Sequence in context: A252742 A066247 A151774 * A288381 A169675 A093385 Adjacent sequences:  A095789 A095790 A095791 * A095793 A095794 A095795 KEYWORD nonn AUTHOR Clark Kimberling, Jun 05 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 14:32 EDT 2021. Contains 345049 sequences. (Running on oeis4.)