login
A151774
Characteristic function of numbers with binary weight 2 (A018900).
5
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
a(A018900(n)) = 1; a(A161989(n)) = 0. - Reinhard Zumkeller, Jun 24 2009
FORMULA
Let Theta = Sum_{k >= 0} x^(2^k). G.f. is (x + Theta^2 - Theta)/2 (cf. A151758).
MATHEMATICA
w[n_] := IntegerDigits[n, 2] // Total;
a[n_] := Boole[w[n] == 2];
a /@ Range[0, 105] (* Jean-François Alcover, Mar 31 2021 *)
PROG
(PARI) a(n)=hammingweight(n)==2 \\ Charles R Greathouse IV, Sep 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 23 2009
STATUS
approved