login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379238
a(n) = 1 if A003961(n)-sigma(n) is prime, otherwise 0, where A003961 is fully multiplicative with a(prime(i)) = prime(i+1), and sigma is the sum of divisors function.
2
0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0
OFFSET
1
FORMULA
a(1) = a(2) = 0, and for n > 2, a(n) = A010051(A286385(n)).
PROG
(PARI)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A379238(n) = isprime(A003961(n)-sigma(n));
CROSSREFS
Characteristic function of A379239.
Cf. also A349167.
Sequence in context: A341612 A252742 A066247 * A151774 A095792 A288381
KEYWORD
nonn,new
AUTHOR
Antti Karttunen, Dec 23 2024
STATUS
approved