OFFSET
1,2
COMMENTS
It is conjectured that this is also the lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A085731(i) = A085731(j) and A376418(i) = A376418(j), for all i, j >= 1, i.e., the restricted growth sequence transform of the triple [A003415(n), A085731(n), A376418(n)]. This is true if for every pair of i and j for which i <> j, and A376418(i) = A376418(j) > 0, the ordered pairs [A003415(i), A085731(i)] and [A003415(j), A085731(j)] differ from each other.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
PROG
(PARI)
up_to = 100000;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); };
v379240 = rgs_transform(vector(up_to, n, Aux379240(n)));
A379240(n) = v379240[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 19 2024
STATUS
approved