login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359550
Characteristic function of A048103; From n >= 1, a(n) is multiplicative with a(p^e) = 1 if p > e, otherwise 0. a(0) = 0 by convention.
36
0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1
OFFSET
0
FORMULA
Multiplicative with a(p^e) = [e < p], where [ ] is the Iverson bracket.
a(n) = [A129251(n) == 0] = [A327936(n) == 1] = [A342007(n) == 1].
a(n) = 1 - A342023(n).
Sum_{k=1..n} a(k) ~ c * n, where c = Product_{p prime} (1 - 1/p^p) = 0.7219902344... . - Amiram Eldar, Jan 07 2023
EXAMPLE
a(0) = 0 because 0 is a multiple of all numbers, including also all numbers of the form p^p, with p prime.
MATHEMATICA
f[p_, e_] := If[e < p, 1, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 06 2023 *)
PROG
(PARI) A359550(n) = if(!n, n, my(f = factor(n)); prod(k=1, #f~, (f[k, 2]<f[k, 1])));
(PARI) A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; \\ Antti Karttunen, Nov 13 2024
(Python)
from sympy import factorint
def A359550(n): return int(all(map(lambda d:d[0]>d[1], factorint(n).items()))) # Chai Wah Wu, Jan 06 2023
CROSSREFS
Characteristic function of A048103.
Cf. A129251, A327936, A328308, A342007, A342023 (one's complement), A359546, A359551 (Dirichlet inverse), A368915 [= a(A003415(n))], A377868 [= a(A276085(n))], A377982 (partial sums).
Sequence in context: A284939 A188260 A341625 * A166486 A046978 A075553
KEYWORD
nonn,mult
AUTHOR
Antti Karttunen, Jan 06 2023
EXTENSIONS
Term a(0)=0 prepended and name edited accordingly - Antti Karttunen, Nov 13 2024
STATUS
approved