|
|
A328308
|
|
a(n) = 1 if k-th arithmetic derivative of n is zero for some k, otherwise 0.
|
|
13
|
|
|
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
COMMENTS
|
Question: What can be said about the distribution of 0's and 1's in this sequence? Compare also to A341996, A359543 and A359546.
|
|
LINKS
|
Michael De Vlieger, Bitmap of a(n), n = 0..2^24, 2048 X 2048 pixels, with 0 in white and 1 in black. Furnishes 4260302 terms of A099308.
|
|
FORMULA
|
For prime p, a(p) = 1, a(p^p * m) = 0, for all m >= 1. a(4m) = 0 for m > 0. - Michael De Vlieger, Jan 04 2023
(End)
|
|
MATHEMATICA
|
w = {}; nn = 2^10; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[Abs@ n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]{1, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[1], MemberQ[w, n], Sow[0], True, If[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1][[-1]] == 0, Sow[1], Sow[0]]], {n, 2, nn}]][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
(* 2nd program: generate m <= 2^24 terms of the sequence from the bitmap above: *)
m = 10^3; Flatten[ImageData[Import["https://oeis.org/A328308/a328308.png"], "Bit"]][[1 ;; m]] /. {0 -> 1, 1 -> 0} (* Michael De Vlieger, Jan 04 2023 *)
|
|
PROG
|
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
|
|
CROSSREFS
|
Characteristic function of A099308.
Cf. A003415, A099309 (positions of zeros), A256750, A328306 [= a(A276086(n))], A328309 (partial sums), A341996, A341999 (one's complement), A342023, A351071, A359541 (inverse Möbius transform), A359543, A359546, A359550.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|