OFFSET
0
COMMENTS
LINKS
Antti Karttunen, Table of n, a(n) for n = 0..65537
Michael De Vlieger, Bitmap of a(n), n = 0..2^24, 2048 X 2048 pixels, with 0 in white and 1 in black. Furnishes 4260302 terms of A099308.
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seq., Vol. 6 (2003), Article 03.3.4.
FORMULA
For prime p, a(p) = 1, a(p^p * m) = 0, for all m >= 1. a(4m) = 0 for m > 0. - Michael De Vlieger, Jan 04 2023
From Antti Karttunen, Jan 06 2023: (Start)
a(0) = 1; and for n > 0, a(n) = A359550(n) * a(A003415(n)). [Provided that Conjecture 3 given on page 5 of Ufnarovski and Åhlander 2003 paper holds, i.e., that map x -> x' never forms nontrivial loops]
a(n) = 1 - A341999(n).
a(n) >= A359543(n).
(End)
MATHEMATICA
w = {}; nn = 2^10; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[Abs@ n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]{1, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[1], MemberQ[w, n], Sow[0], True, If[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1][[-1]] == 0, Sow[1], Sow[0]]], {n, 2, nn}]][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
(* 2nd program: generate m <= 2^24 terms of the sequence from the bitmap above: *)
m = 10^3; Flatten[ImageData[Import["https://oeis.org/A328308/a328308.png"], "Bit"]][[1 ;; m]] /. {0 -> 1, 1 -> 0} (* Michael De Vlieger, Jan 04 2023 *)
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved