login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328308
a(n) = 1 if k-th arithmetic derivative of n is zero for some k, otherwise 0.
16
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1
OFFSET
0
COMMENTS
Question: What is the asymptotic mean of this and related sequences like A368915? Compare also to A341996, A359543 and A359546.
LINKS
Michael De Vlieger, Bitmap of a(n), n = 0..2^24, 2048 X 2048 pixels, with 0 in white and 1 in black. Furnishes 4260302 terms of A099308.
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seq., Vol. 6 (2003), Article 03.3.4.
FORMULA
For prime p, a(p) = 1, a(p^p * m) = 0, for all m >= 1. a(4m) = 0 for m > 0. - Michael De Vlieger, Jan 04 2023
From Antti Karttunen, Jan 06 2023: (Start)
a(0) = 1; and for n > 0, a(n) = A359550(n) * a(A003415(n)). [Provided that Conjecture 3 given on page 5 of Ufnarovski and Åhlander 2003 paper holds, i.e., that map x -> x' never forms nontrivial loops]
a(n) = 1 - A341999(n).
a(n) >= A359543(n).
(End)
For all n > 1, a(n) <= A368915(n) <= A359550(n). - Antti Karttunen, Jan 10 2024
MATHEMATICA
w = {}; nn = 2^10; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[Abs@ n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]{1, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[1], MemberQ[w, n], Sow[0], True, If[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1][[-1]] == 0, Sow[1], Sow[0]]], {n, 2, nn}]][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
(* 2nd program: generate m <= 2^24 terms of the sequence from the bitmap above: *)
m = 10^3; Flatten[ImageData[Import["https://oeis.org/A328308/a328308.png"], "Bit"]][[1 ;; m]] /. {0 -> 1, 1 -> 0} (* Michael De Vlieger, Jan 04 2023 *)
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
CROSSREFS
Characteristic function of A099308.
Cf. A003415, A099309 (positions of zeros), A256750, A328306 [= a(A276086(n))], A328309 (partial sums), A341996, A341999 (one's complement), A342023, A351071, A359541 (inverse Möbius transform), A359543, A359546, A359550, A368915.
Sequence in context: A135839 A071022 A155076 * A257196 A176137 A290808
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved