login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A328308 a(n) = 1 if k-th arithmetic derivative of n is zero for some k, otherwise 0. 13
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0
COMMENTS
Question: What can be said about the distribution of 0's and 1's in this sequence? Compare also to A341996, A359543 and A359546.
LINKS
Michael De Vlieger, Bitmap of a(n), n = 0..2^24, 2048 X 2048 pixels, with 0 in white and 1 in black. Furnishes 4260302 terms of A099308.
FORMULA
For prime p, a(p) = 1, a(p^p * m) = 0, for all m >= 1. a(4m) = 0 for m > 0. - Michael De Vlieger, Jan 04 2023
From Antti Karttunen, Jan 06 2023: (Start)
a(0) = 1; and for n > 0, a(n) = A359550(n) * a(A003415(n)).
a(n) = 1 - A341999(n).
a(n) >= A359543(n).
(End)
MATHEMATICA
w = {}; nn = 2^10; k = 1; While[Set[m, #^#] <= nn &[Prime[k]], AppendTo[w, m]; k++]; a3415[n_] := a3415[n] = Which[Abs@ n < 2, 0, PrimeQ[n], 1, True, n Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]{1, 1}~Join~Reap[Do[Which[PrimeQ[n], Sow[1], MemberQ[w, n], Sow[0], True, If[NestWhileList[a3415, n, And[! Divisible[#, 4], FreeQ[w, #]] &, 1][[-1]] == 0, Sow[1], Sow[0]]], {n, 2, nn}]][[-1, -1]] (* Michael De Vlieger, Jan 04 2023 *)
(* 2nd program: generate m <= 2^24 terms of the sequence from the bitmap above: *)
m = 10^3; Flatten[ImageData[Import["https://oeis.org/A328308/a328308.png"], "Bit"]][[1 ;; m]] /. {0 -> 1, 1 -> 0} (* Michael De Vlieger, Jan 04 2023 *)
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A328308(n) = if(!n, 1, while(n>1, n = A003415checked(n)); (n));
CROSSREFS
Characteristic function of A099308.
Cf. A003415, A099309 (positions of zeros), A256750, A328306 [= a(A276086(n))], A328309 (partial sums), A341996, A341999 (one's complement), A342023, A351071, A359541 (inverse Möbius transform), A359543, A359546, A359550.
Sequence in context: A135839 A071022 A155076 * A257196 A176137 A290808
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 15:12 EDT 2023. Contains 365660 sequences. (Running on oeis4.)