login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341999
a(n) = 1 if the k-th arithmetic derivative is nonzero for all k >= 0, otherwise 0.
13
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0
OFFSET
0
COMMENTS
Characteristic function of A099309.
FORMULA
a(n) = 1 if n is in A100716 or ends there by repeated applications of A003415, otherwise a(n) = 0 (when n instead reaches 0 by such iteration).
For all n, a(n) >= A341996(n).
For all n > 0, a(A099309(n)) = a(A100716(n)) = 1.
For all n > 0, a(n) = [A256750(n) < 1].
For all n > 0, a(n) >= [A129251(n)>0], i.e., if A129251(n) is nonzero, then certainly a(n) = 1.
For all n > 1, a(n) >= [A341997(n) > 1].
a(n) = 1 - A328308(n), and for n >= 1, a(n) = A342023(n) + A359546(n). - Antti Karttunen, Jan 05 2023
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A341999(n) = if(!n, n, while(n>1, n = A003415checked(n)); (!n));
CROSSREFS
Cf. A099308 (positions of zeros), A099309 (of ones), A328308 (one's complement), A342023, A359542 (inverse Möbius transform), A359546.
Sequence in context: A144596 A188187 A341996 * A118685 A244063 A080343
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 28 2021
STATUS
approved