OFFSET
1
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
For all n >= 1,
For all n >= 0, a(A276086(n)) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - Product_{p prime} (1 - 1/p^p) = 0.2780097655... . - Amiram Eldar, Jul 24 2022
MATHEMATICA
Array[Function[{D, q}, Boole[Total@ Table[Count[D, _?(IntegerExponent[#, p] == p &)], {p, Prime@ Range@ q}] > 0]] @@ {Divisors[#], PrimePi@ Floor[Sqrt[#]]} &, 120] (* Michael De Vlieger, Mar 11 2021 *)
PROG
(PARI) A342023(n) = if(1==n, 0, my(f = factor(n)); for(k=1, #f~, if(f[k, 2]>=f[k, 1], return(1))); (0));
(Python)
from sympy import factorint
def A342023(n):
f = factorint(n)
for p in f:
if p <= f[p]:
return 1
return 0 # Chai Wah Wu, Mar 09 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 09 2021
STATUS
approved