login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188221
[nr+kr]-[nr]-[kr], where r=sqrt(5), k=1, [ ]=floor.
3
0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1
OFFSET
1
COMMENTS
Differs from A188187 in number of initial zeros. This sequence yields right-shift sums (introduced at A187950), and A188187 yields left-shift sums (A188014).
(a(n)) is the Sturmian sequence with slope sqrt(5)-2. This number has continued fraction expansion [0; 4,4,4, ...]. It is therefore fixed point of a morphism sigma, which can be found with the Crisp et al link: sigma is given by 0 -> 0001, 1 -> 00010. - Michel Dekking, Aug 02 2017
LINKS
D. Crisp, W. Moran, A. Pollington, P. Shiue, Substitution invariant cutting sequences, Journal de théorie des nombres de Bordeaux 5, (1993), p. 123-137.
FORMULA
a(n) = [nr+r]-[nr]-[r], where r=sqrt(5).
MATHEMATICA
r=5^(1/2); k=1;
seqA=Table[Floor[n*r+k*r]-Floor[n*r]-Floor[k*r], {n, 1, 220}] (* A188221 *)
Flatten[Position[seqA, 0] ] (* A188222 *)
Flatten[Position[seqA, 1] ] (* A004976 *)
PROG
(Python)
from sympy import integer_nthroot
def A188221(n): return integer_nthroot(5*(n+1)**2, 2)[0]-integer_nthroot(5*n**2, 2)[0]-2 # Chai Wah Wu, Mar 16 2021
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 24 2011
STATUS
approved