This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188014 a(n) = [nr]-[nr-kr]-[kr], where r=(1+sqrt(5))/2, k=4, [ ]=floor. 80
 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1 COMMENTS Suppose r is a positive irrational number and k is a positive integer, so that the sequence given by a(n)=[nr]-[nr-kr]-[kr] consists of zeros and ones. Let b(n)=(position of n-th 0) and c(n)=(position of n-th 1), so that b and c are a complementary pair of sequences. Examples of a, b, c using r=(1+sqrt(5))/2:   k=1:  a=A096270, b=A026352, c=A026351   k=2:  a=A188009, b=A188010, c=A101866   k=3:  a=A188011, b=A188012, c=A188013   k=4:  a=A188014, b=A188015, c=A188016 Example using r=sqrt(2):   k=1:  a=A188037, b=A083088, c=A080754. Returning to arbitrary positive irrational r, let s(n)=[nr]-[nr-r]-[r], this being a(n) when k=1.  For k>=2, the sequence a(n)=[nr]-[nr-kr]-[kr] is a shifted sum of shifted copies of s:   a(n)=s(n)+s(n-1)+...+s(n-k+1)-(constant).  This sum matches the sum s(n)+s(n+1)+...+s(n+k-1)-(constant) at A187950. Ratio of number of zeros to number of ones tends to sqrt(5)/2=1.118. Any (simple) proof? [Zak Seidov, Feb 14 2012] According to Charles R Greathouse IV (see formula), a(n)=1 if the fractional part of nr is less than w(1)=4r-6,and 0 otherwise, where r=(1+sqrt(5))/2. It means that probability of ones and zeros is, respectively, w(1) and w(0)=1-w(1). In the long run, number of ones and zeros is, respectively, w(1)*n and w(0)*n and, finally, the ratio of number of zeros to number of ones tends to w(0)/w(1)=sqrt(5)/2, qed. [Zak Seidov, Feb 17 2012] Essentially the same as A187950. - Michel Dekking, Sep 17 2016 LINKS Ivan Panchenko, Table of n, a(n) for n = 1..1000 FORMULA a(n) = [nr]-[nr-4r]-[4r], where r=(1+sqrt(5))/2. a(n) = 1 if the fractional part of nr is less than 4r - 6, and 0 otherwise. [Charles R Greathouse IV, Feb 14 2012] a(n+4) = A187950(n) for n>=1. - Michel Dekking, Sep 17 2016 EXAMPLE We get a=A188014, b=A188015, c=A188016 when r=(1+sqrt(5))/2 and k=4: a......0..1..0..0..1..0..1..0..0..1..0..1..1... b......1..3..4..6..8..9..11..14.. (positions of 0 in a) c......2..5..7..10..12..13..15... (positions of 1 in a). As noted in Comments, a(n)=[nr]-[nr-4r]-[4r] is also obtained in another way:  by adding right shifts of the infinite Fibonacci word s=A096270 (after left-extending it) and then down shifting: s(n)......0..1..0..1..1..0..1..0..1..1..0..1..1.. s(n-1)....1..0..1..0..1..1..0..1..0..1..1..0..1.. s(n-2)....1..1..0..1..0..1..1..0..1..0..1..1..0.. s(n-3)....0..1..1..0..1..0..1..1..0..1..0..1..1.. sum.......2..3..2..2..3..2..3..2..2..3..2..3..3.. sum-2.....0..1..0..0..1..0..1..0..0..1..0..1..1.. (Right shifts s(n-k) of the infinite Fibonacci word are obtained from s(n)=[nr]-[nr-nk]-[nk] rather than the morphism 0->01, 1->011 at A096270.  For an analogous example using left shifts, see A187950.) MATHEMATICA r=(1+5^(1/2))/2; k=4; t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r], {n, 1, 220}]   (*A188014*) Flatten[Position[t, 0]]  (*A188015*) Flatten[Position[t, 1]]  (*A188016*) PROG (PARI) a(n)=my(r=(1+sqrt(5))/2); n*r-n*r\1<4*r-6 \\ Charles R Greathouse IV, Feb 14 2012 (Python) from __future__ import division from gmpy2 import isqrt def A188014(n):     return int((isqrt(5*n**2)+n)//2 -(isqrt(5*(n-4)**2)+n)//2 - 4) if n > 3 else 1-(n % 2) # Chai Wah Wu, Oct 07 2016 CROSSREFS Cf. A188015, A188016, A187950. Sequence in context: A285205 A286654 A188034 * A288600 A284468 A260455 Adjacent sequences:  A188011 A188012 A188013 * A188015 A188016 A188017 KEYWORD nonn AUTHOR Clark Kimberling, Mar 19 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 03:27 EST 2018. Contains 318052 sequences. (Running on oeis4.)